The Majorana Project: A Next-Generation Neutrino Mass Probe

Craig Aalseth
for
The Majorana Collaboration
http://majorana.pnl.gov

TAUP 2003, Seattle, Washington
September 6, 2003
The Majorana Collaboration

Brown University, Providence, RI
Rick Gaitskell

Duke University, Durham, NC
Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia
A. Barabash, S. Konovalov, V. Stekhanov, V. Umatov

Joint Institute for Nuclear Research, Dubna, Russia
V. Brudanin, S. Egorov, O. Kochetov, V. Sandukovsky

Lawrence Berkley National Laboratory, Berkeley, CA
Yuen-Dat Chan, Paul Fallon, Kevin Lesko, Augusto Macchiavelli, Alan Poon

Lawrence Livermore National Laboratory, Livermore, CA
Kai Vetter

Los Alamos National Laboratory, Los Alamos, NM
Ted Ball, Steve Elliott, Andrew Hime

New Mexico State University, Carlsbad, NM
Joel Webb

North Carolina State University, Raleigh, NC
Jeremy Kephart, Ryan Rohm, Albert Young

Oak Ridge National Laboratory, Oak Ridge, TN
Cyrus Baktash, Thomas Cianciolo, Robert Grzywacz, David Radford, Krzysztof Rykaczewshi

Osaka University, Osaka, Japan
Hiro Ejiri, Ryuta Hazama, Masaharu Nomachi

Pacific Northwest National Laboratory, Richland, WA
Harry Miley, Project Director
Craig Aalseth, Ronald Brodzinski, Shelece Easterday, Todd Hossbach, David Jordan, Richard Kouzes, William Pitts, Ray Warner

University of Chicago, Chicago, IL
Juan Collar

University of Tennessee, Knoxville, TN
Yuri Efremenko

University of South Carolina, Columbia, SC
Frank Avignone, George King

University of Washington, Seattle, WA
Peter Doe, Victor Gehman, Kareem Kazkaz, R.G. Hamish Robertson, John Wilkerson
Outline

- Introduction and Overview
- Reference Concept
 - Configuration
 - Materials
- Backgrounds and Mitigation
 - Pulse-Shape Discrimination
 - Detector Segmentation
- Experiment Sensitivity
- Progress and Status
- Conclusions
Majorana Overview

GOAL: Sensitive to effective Majorana mass near 50 meV

$0^+\gamma\beta$ decay of ^{76}Ge potentially measured at 2039 keV

Based on well known ^{76}Ge detector technology plus:
- Pulse-shape analysis
- Detector segmentation

Requires:
- Deep underground location
- 500 kg enriched 86% ^{76}Ge
- many crystals, segmentation
- Pulse shape discrimination
- Time/Spatial Correlation
- Special low-background materials

Reference Configuration
Detector Configuration

- Granularity, low passive mass, are goals
- Optimization underway of performance and risk
 - Several low-risk designs possible for modular cryostats
 - Many segmentation schemes possible and equally effective
 - Nature of Ge crystals allows repackaging
Low-Background
Electroformed Copper

- Can be easily formed into thin, low-mass parts
- Recent designs reduce $m_{\text{Cu}}/m_{\text{Ge}} \times 5$
- UG Electroforming can reduce cosmogenics
- Pre-processing can reduce U-Th
- Recent results suggest cleaner than thought

Electroformed cups shown have wall thickness of only 250 µm!
Starting Background Estimate

International Germanium Experiment (IGEX) achieved between 0.1-0.3 counts/keV/kg/y

Documented experiences with cosmic secondary neutron production of isotopes

<table>
<thead>
<tr>
<th>Spallation Isotope</th>
<th>$T_{1/2}$ (d)</th>
<th>Rate from [Bro95]</th>
<th>After Construction</th>
<th>Rate During Experiment</th>
<th>Total in ROI</th>
<th>After PSD Rejection</th>
<th>After Seg Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>68Ge</td>
<td>270.82</td>
<td>0.1562</td>
<td>0.03702</td>
<td>3.93E-03</td>
<td>70.15</td>
<td>18.59</td>
<td>2.57</td>
</tr>
<tr>
<td>56Co</td>
<td>77.27</td>
<td>0.0238</td>
<td>0.00212</td>
<td>6.43E-05</td>
<td>1.15</td>
<td>0.30</td>
<td>0.04</td>
</tr>
<tr>
<td>60Co</td>
<td>1925.2</td>
<td>0.0177</td>
<td>0.01294</td>
<td>7.15E-03</td>
<td>127.55</td>
<td>33.80</td>
<td>4.66</td>
</tr>
<tr>
<td>58Co</td>
<td>70.82</td>
<td>0.0024</td>
<td>0.000202</td>
<td>5.60E-06</td>
<td>0.10</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cts/keV/kg/y</td>
<td>cts/keV/kg/y</td>
<td>counts</td>
<td>counts</td>
<td>counts</td>
<td>counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.0523</td>
<td>0.0112</td>
<td>198.95</td>
<td>52.72</td>
<td>7.28</td>
</tr>
</tbody>
</table>

Segmentation & Pulse-Shape Discrimination

- Allow rejection of multiple-site interactions
- Effective against projected backgrounds
- Granularity Costs Money/Should be optimized

Different Schemes Being Evaluated
- Segmented Large N-type Crystals
- Multiple Small P-type Crystals
- Segmented Large P-type Crystals
Why Now is a good time for PSD….

- Commercial digital spectroscopy hardware is available with fast (40 MHz), high-resolution (14-bit) digitization
- Significant developments in pulse-shape discrimination techniques for HPGe have been made in the past 10 years and are ready to apply to new hardware

Full-energy 1621-keV (top) and 1592-keV DEP (bottom) reconstructed current pulses from 120% P-type Ortec HPGe detector (experimental data)
PSD can reject multiple-site backgrounds (like 68Ge and 60Co)

- 228Ac 1587.9 keV
- DEP of 208Tl 1592.5 keV
- 212Bi 1620.6 keV

Experimental Data

- Original spectrum
- Scaled PSD result
- Keeps 80% of the single-site DEP (double escape peak)
- Rejects 74% of the multi-site backgrounds (use 212Bi peak as conservative indicator)
- Improves $T_{1/2}$ limit by 56%
Detector Segmentation

- Sensitive to axial and azimuthal separation of depositions
- Example design with six azimuthal and two axial contacts in a 2-kg detector
- This segmentation gives ~2500 segments of 200 g (or 40 cm3) each
- Many segmentation schemes give equivalent good background rejection
Monte-Carlo Example
(single crystal)

Internal 60Co before and after one-segment cut

Sensitive to z and phi separation of depositions

- ϕ efficiency = 91%
- Internal 60Co efficiency = 14%
- Improves $T_{1/2}$ limit by 140%

Next Steps:
- T improvement increases to 260% - 620% when including array self-shielding, depending on position of crystal – not included in earlier background estimate
- Time-series analysis of background very promising

Segment multiplicity at 2039 keV
Sensitivity vs. Time

- **Slow Production**: Gradual ramp to 100 kg/y - total 500 kg 85% 76Ge
- **Fast Production**: 200 kg/y (No ramp)
- Present 76Ge $T_{1/2}$ limit rapidly surpassed ($T_{1/2} > 1.9 \times 10^{25}$ y)

Based on early IGEX background levels with reasonable background reduction and cutting methods applied
Collaboration Progress:
Optimizations for Full Experiment

Segmented Enriched Germanium Array (SEGA):
Segmented Ge
1 to 5 Crystals
First enriched, segmented detector in testing!
Additional tests being planned for other segmented systems

Multi Element Germanium Assay (MEGA):
16+2 natural Ge

High density
Materials qualification
Cryogenic design test
Geometry & signal routing test
Powerful screening tool

MAJORANA:
500 kg Ge detectors
All enriched/segmented Multi-crystal modules

Full Experiment
Progress and Status
SEGA: Segmentation Optimization

First (enriched) 6x2 SEGA operating
- Current: Testing (TUNL)
- Shallow UG testing at U Chicago LASR facility
- Operation in WIPP

Second and third SEGA planning
- Funds in hand (LANL, USC)
- Alternate segmentation testing underway (USC/PNNL)
- 40-fold-segmented LLNL detector now available

Figure-Of-Merit vs. Axial & Azimuthal Segmentation for internal 60Co background

SEGA crystal initial test cryostat
Progress and Status

Ultra-Low Level Screening

Screening facility
- Operating in Soudan (Brown U)
- Two HPGE detectors (1.05 kg, 0.7 kg)

Planned use for screening
- Minor materials used in manufacturing
- Improved Cu testing
- Small parts qualification
 - FET, cable, interconnects, etc
Progress and Status
MEGA: Cryogenic testing

- Materials in hand
 - Detectors (20 - 70% HPGe), electronics
- Assembly and cryogenic testing of two-crystal modules underway (PNNL, UW, NC State)
- Underground facility (WIPP) in prep (LANL, NMSU)
- Fall 2003 installation anticipated
- Sensitive to $\sim 10^4$ short-lived atoms
MEGA Infrastructure at WIPP

- Steel sub-floor to support many-ton lead shields
- Cleanroom enclosure with antechamber entry
- Power, network connectivity

Q-Room Alcove
Module Assembly & Testing

(MEGA)
Conclusions

Reference Plan meets sensitivity goals
- Opportunities for enhancements exist
- Potential for discovery

Unprecedented confluence:
- Enrichment availability/Neutrino mass interest/
 Underground facility development

High Density:
- Modest apparatus footprint, no special cavity required

Low Risk:
- Proven technology/ Modular instrument / Relocatable
- Early results / Incremental deployment

Experienced and Growing Collaboration
- Long track record, many technical resources