Noise Calibration in the ADMX Receiver Chain

Jenny Smith
Harvey Mudd College
Advisors: Leslie Rosenberg and Gray Rybka
August 16th 2017
The Axion

An elegant solution to two problems

Nuclear Physics Problem

Dark Matter Problem

Axion “Haloscope” Detection Scheme

Classical EM field

Sea of virtual photons

Primakoff Effect

ADMX Public Website
ADMX

The Biggest and the Best

Cavity Frequency (GHz)

| Axion Coupling $|g_{aY}|$ (GeV$^{-1}$) |
|-----------------|
| 10^{-10} |
| 10^{-11} |
| 10^{-12} |
| 10^{-13} |
| 10^{-14} |
| 10^{-15} |
| 10^{-16} |
| 10^{-17} |

- Earlier ADMX run
- Future ADMX runs
- Most Likely Coupling

ADMX G2 Discovery Potential

DFSZ

Power of axion signal in cavity:

\[\approx 10^{-24} \text{ Watts} \]

Dicke Radiometer Equation:

\[SNR = \frac{P_a}{P_N} \sqrt{Bt} \]

Scan Time with Fixed SNR

scan rate \(\propto (B_0^2 V)^2 \frac{1}{T_s^2} \)

Sensitivity with fixed scan rate

\[g_{\alpha \gamma \gamma} \propto \frac{T_s}{B_0^2 V} \]

System Temperature (Ts) is a critical system parameter
Convenient to treat device noise sources as if they were all thermal noise.

\[P = k_B T B \]

- **Input Signal**
- **amplifier**
- **SNR in**
- **SNR out**
- **Noise Power**
- **Boltzmann Constant**
- **Noise Temperature**
- **Bandwidth**

Noise Temperature

SNR in

SNR out
ADMX Receiver Chain

Simplified Model of Cascaded Amplifiers

Low Noise Factory (LNF) High Electron Mobility Field Effect Transistor (HFET)

Physical Temperature Key
- 4-10 K
- 4 K
- 1 K
- 500 mK
- 100 mK

To receiver

HEMT 2
600-11

HEMT 1
600-

Hot Load

DC Block

MSA

Antenna

Cavity

Room Temperature Measurement

+28 V

Noise Source

LNF 028H

SA

8500K

X100

~1,000,000 K

8500K

X100

~1,000,000 K

Noise Source

LNF 028H

SA

LNF Amp

Noise Source
Noise Power Change (Noise Source 2)

Power (dBm)

Freq (Hz) \times 10^9

-54

-55

-56

-57

-58

0.8

1

1.2

1.4

1.6

1.8

2

- Noise Source On
- Noise Source Off
LNF Noise Temp, Physical Temp 300K

Raw Noise Temperature

Filtered Noise Temperature

Manufacturer Data RT Noise Temp: ~60K
Liquid Nitrogen Test

“Due to be calibrated in 1996”

77K / 300K
Hot/Cold Noise Power Change

Power (dBm)

Freq (Hz) \times 10^9

Th = 300K
Tc = 77K
Cryo Test

- Heater
- Attenuator
- LNF
- MINI
- SA

Diagram showing a cryogenic system with a heater and an attenuator connected to a \(~4\,\text{K}\) cryostat.
Results

LNF 021H Hot Load Test 8/11/2017

Power (dBm)

-90
-80
-70
-60

Frequency (Hz) ×10^9

0 0.5 1 1.5 2 2.5

61.2 K
49.2 K
42.9 K
35.6 K
26.7 K
18.5 K
12.6 K
Amp Noise Temp, Physical Temp \(\sim 10K \)

\[
T_{\text{amp}} = 2.2 \pm 1.2 \text{ K}
\]

Manufacturer Data 5K Temp: \(\sim 2 \text{ K} \)!
Conclusion

Ts is a critical parameter in determining ADMX sensitivity and scan rate.

Noise temperature measurements are hard.

Do not trust things that are out of calibration. Do trust liquid nitrogen.

LNF 021 H looks like a promising amplifier to add to the ADMX receiver chain!
Thank you to the ADMX team!
Thermometry Data
Figure 2

Average Output Power and Amp Temp vs. Input Power
Noise Temp (Noise Source 2)

Manufacturer Data RT Noise Temp: ~60K
The Axion

An elegant answer to two problems

Originally postulated by Pecci-Quinn theory in 1977 to solve problem in QCD:

QCD Lagrangian term \(\propto F \tilde{F} \tilde{\theta} - \)?

These terms must cancel to 1 part in \(10^{-10} \)

Axion field could explain this hidden symmetry

Axion Mass:

\[
m_a = \frac{(m_u m_d)^{1/2}}{m_u + m_d} \frac{f_\pi}{f_{PQ}/N} m_\pi
\]

Axion Density:

\(10^{14} \) axions/cm\(^3\) in the local galaxy
Axion Mass Constraints

Too Much Dark Matter

Search Window

Red Giants (KSVZ)

Red Giants (DFSZ)

SN1987A

Accelerator Experiments

Axion Mass (eV)

10^{-9} 10^{-6} 10^{-3} 10^{0} 10^{3} 10^{6}
Detection Theory

Resonant conversions of axions to photons:

\[\mathcal{L}_{a\gamma\gamma} = g_\gamma \frac{\alpha}{\pi} \frac{a(x)}{f_a} E \cdot B, \]

Axion coupling constant

Kim-Shifman-Vainshtein-Zakharov (KSVZ) model, \(g_\gamma = -0.97 \)
DineFischler-Srednicki-Zhitnitsky (DFSZ) model \(g_\gamma = 0.36 \)
The Axion

An elegant answer to two problems

Nuclear Physics Problem

Why do two seemingly unrelated terms in QCD Lagrangian cancel to 1 part in 10^{10}?

Axion field could explain this hidden symmetry

Axion Density: 10^{14} axions/cm3 in the local galaxy

Dark Matter Problem

What is this “missing mass” that makes up ~30% of our universe?

Axion Mass: $m_a = \frac{(m_u m_d)^{1/2}}{m_u + m_d} \frac{f_\pi}{f_{PQ}/N} m_\pi$
Yes, Heater Works

![Graph showing temperature (Kelvin) over time (minutes). The temperature increases significantly, indicating that the heater works effectively.]
Results

LNF 021H Noise Temperature, Physical Temp = ~10K

Amp Noise Temperature (Kelvin) vs Frequency (Hz)
The graph shows the output power (dBm) as a function of frequency (Hz). Different temperatures are represented by colored lines, with the following temperatures and colors:

- 61.2 K: Pink
- 49.2 K: Red
- 42.9 K: Orange
- 35.6 K: Yellow
- 26.7 K: Cyan
- 18.5 K: Green
- 12.6 K: Blue

The x-axis represents frequency in Hz, ranging from 0 to 2.5 × 10^9 Hz. The y-axis represents output power in dBm, ranging from -85 to -60 dBm.
Dark Matter: The Evidence

Bullet Cluster (Colliding Galaxies)

Gravitational Lensing

Galactic Rotation Curve

\[
\frac{v_{\text{orbital}}}{v_{\text{enc}}} \approx \frac{G M_{\text{enc}}}{R}
\]

Max Planck Society Millennium Simulation Project
Springel et al. (2005)

SuperCDMS (Queens University)