Barium Ion Trapping

Rebecca Schutzengel

Franklin W. Olin College of Engineering
University of Washington INT REU

August 20, 2012
Uses for Ion Trapping

- Bell’s Inequality tests
- Quantum Computing
Oscillating potential

Source: Oak Ridge National Laboratory

http://www.ornl.gov/info/press_releases/photos/Paul%20Trap%20pic.png
In order to load an ion trap we must:

1. Heat the barium oven
2. Ionize a barium atom
3. Cool the ion
In order to load an ion trap we must:

1. Heat the barium oven
2. Ionize a barium atom
3. Cool the ion
In order to load an ion trap we must:

1. Heat the barium oven
2. Ionize a barium atom
3. Cool the ion
Loading the Trap

In order to load an ion trap we must:
1. Heat the barium oven
2. Ionize a barium atom
3. Cool the ion
Problem

- Barium atoms are not making it into the chip trap
- The hole that the atoms should be traveling through is blocked
- The oven is producing large barium chunks while it heats up. These chunks block the hole and prevent any trapping.
Movable Shield

- Actuated using a bimetal strip
Movable Shield

- Actuated using a bimetal strip
- Tested in vacuum
Movable Shield

- Actuated using a bimetal strip
- Tested in vacuum
Movable Shield

- Actuated using a bimetal strip
- Tested in vacuum
Movable Shield

- Actuated using a bimetal strip
- Tested in vacuum
Movable Shield

- Actuated using a bimetal strip
- Tested in vacuum
Detecting the Ions

PMTs detect photons emitted by the ions

For entanglement experiments, we want to be able to detect single emitted photons
Therefore, we need a very high sensitivity and a very low noise level
Detecting the Ions

- PMTs detect photons emitted by the ions
Detecting the Ions

- PMTs detect photons emitted by the ions

For entanglement experiments, we want to be able to detect single emitted photons. Therefore, we need a very high sensitivity and a very low noise level.
Detecting the Ions

- PMTs detect photons emitted by the ions
- For entanglement experiments, we want to be able to detect single emitted photons
 - Therefore, we need a very high sensitivity and a very low noise level
Lowering the noise level

- Dark counts are false positive readings from the PMT
- They constitute a significant fraction of our noise level
Summary

Improvements to ion trapping system:
- Movable shield
 - Prevents blockage of the hole that allows ions into the trap
 - Allows repeated re-loading of trap
- Lowered noise from PMT
Acknowledgements

Thank you to:

- Boris Blinov for being my advisor
- Tom, Carolyn, Matt, Spencer, John, Tomasz and the rest of the Trapped Ion Quantum Computing Group for helping me with my project and teaching me so much about theirs
- Emma, Rachel, Emily, Hunter, Eli, Scott and Jarret for being awesome people to spend my summer with
- Deep, Alejandro, Linda and Janine for organizing the REU program and making this all possible
Questions?