Plan for Renormalization Group 2:

1. Recap of some important points from the slides shown yesterday (using 6.2a-2 and 2b, plus 6c exercises)

2. Local projection (visualizing potential changes in coordinate space) and flow to universal potentials (where does unresolved physics go?)

3. Alternative generators — Wegner and block diagonal (\text{Wang})

4. Operators and many-body contributions

5. Perturbativeness — Weinberg eigenvalues

6. Computational aspects
Recall of important points from the slides.

1. Nuclei would be at low resolution based on Fermi momenta in large nuclei.
2. Recall from exercises $p = \frac{2}{3\pi^2} k_f^3$ (for protons & neutrons).
 $\Rightarrow k_f = (3\pi^2 \rho(\rho))^\frac{1}{3}$ (see next page).

3. Density of heavy nuclei about constant $\Rightarrow k_f \approx 1.1 - 1.3 \text{ fm}^{-1}$.
4. So typical relative momentum of $\approx 1 \text{ fm}^{-1}$ ($\approx 200 \text{ MeV}$).
 In a large nucleus, even less in light nuclei.

But if the potential has a repulsive core, then there are strong high-momentum components ("short-range correlations").

$\Rightarrow \text{ slow-down convergence of many-body solution.}
 \text{ e.g., matrices get too big.}

\text{Low pass filter fails even for low energy.}

\text{Why? Because of quantum mechanics,}
T = V + V \sum_{H_0} \frac{1}{E - \omega} V + \cdots.
\Rightarrow \langle k_{1f} | k_f \rangle = \langle k_{1f} | V | k_f \rangle + \int \text{dk}^3 \frac{\langle k_{1f} | V | k_f \rangle \langle k_f | V | k_f \rangle}{(k^2 - k_f^2)/m} + \cdots.
\text{Low momentum}

\text{Solution? Unitary transformation to decouple! Use RG to do it.}
Aside: deriving \(g = \frac{2}{3\pi^2} k_f^3 \)

- For a non-interacting Fermi gas, imagine putting \(N \) particles in a box of side \(L \) \(\Rightarrow \ g = \frac{N}{L^3} \)

 - Let \(\nu \) be the spin-isospin degeneracy:
 \(\nu = 2 \) for neutrons only (spin up, spin down)
 \(\nu = 4 \) for symmetry matter (\(\uparrow \uparrow \), \(\downarrow \downarrow \), \(\uparrow \downarrow \), \(\downarrow \uparrow \))

Apply periodic boundary conditions \(\Rightarrow \) discrete momentum levels:

Then \(N = \sum_{n=1}^{n_{max}} \nu \cdot \frac{1}{n^3} \)

But pbc: \(e^{i(k_f x + k L)} = e^{ik_L} \) in each dimension

\(\Rightarrow k_f L = \frac{2\pi n}{1} \) \(n = 1, 2, 3, \ldots \) are allowed

\(\Rightarrow n = \frac{k_f}{2\pi} \) or \(\Delta N = \frac{1}{2\pi} \Delta k \) in each dimension

\(\nu \) large \(\Rightarrow \sum_{n} \approx \frac{1}{n^3} \times \frac{4}{2\pi} \int d^3 k = \frac{V}{\pi \rho^2} \int d^3 k \)

\(\Rightarrow N = \frac{V}{\pi \rho^2} \int d^3 k \cdot \nu \)

\(\text{volume of sphere in large } V \text{ limit} \)

\(\frac{N}{\nu} = g = \frac{1}{8\pi^2} \cdot \frac{4}{3} \pi k_f^3 \cdot \nu = \frac{V k_f^3}{\pi \rho^2} \)
November 11, 2013

Wednesday exercises review

1. (c) Why would we want to repeat nuclear structure
 calculations for different values of Δ? (as Δ):
 - Observables are supposed to be unchanged
 - Test if a quantity is an observable (example,
 clear demonstration that U-state probability in N-deuteron is not)
 - Determine if scale dependence of a quantity
 - Test for errors
 - Test approximations
 - We will see this particularly in considering many-body
 potentials and other operators.

2. General equation is
 \[\Delta H_5 = [\Delta H_5, H_5] = [\Delta G_5, H_5, H_5] \]
 - ΔT_{red} (or T_{red}) doesn't change by construction
 - What if we used $T = T_{red} + T_{red}$ for G_5 instead of T_{red}?
 (answer: $[\Delta G_5, H_5] = 0$, so no difference!)
 - Other choices for G_5: $[\Delta G_5, H_5] = 0$, so no difference!

3. $\langle k \mid \frac{d\Delta H_5}{ds} \mid k' \rangle = \frac{\delta N(k,k')}{\delta s} = -(k^2 - k'^2) V_5(k,k') + \frac{2}{\pi} \int_{k^2+k'^2}^{\infty} \frac{dV_5(k,k')}{\sqrt{k'^2+k^2}} \mid k'^2-k^2 \rangle$
 - If $-(k^2-k'^2) V_5(k,k')$ dominates then $V_5(k,k') \approx \frac{1}{2} \int_{k^2}^{\infty} V_5(k,k') dx$
 - Look at slides
Visualizing the softening of NN interactions

- In momentum space we associate softening of a potential with decreased coupling between high and low momenta:

\[\langle k_{\text{high}} | V | k_{\text{low}} \rangle \rightarrow 0 \]

- But what does this do to our picture of potentials having strong short-range repulsion?

 - Visualizing is not so easy, because the potential becomes non-local, so it is a functional of \(r \) and \(r' \)

 - Note that the \(-\left(k^2 - k'^2\right) V(k, k')\) term in the SRG equation (not partial wave projected) can be written using

\[R^2 - R'^2 = (E + k) \cdot (E - k') \rightarrow p \cdot q \]

as an explicit function of total momentum \(\vec{p} = (E + k) \) and not just momentum transfer \(\vec{q} = \vec{R} - \vec{R}' \) \(\rightarrow \) non-local

- Plan is use a local projection

 - The high-momentum tails of low-energy wavefunctions are suppressed by RG evolution which implies the wavefunction variation over short distances is small. So in the non-local Schrödinger equation:

\[-\frac{1}{2m} \nabla^2 \psi(r) + \int d^3r' \frac{1}{|r - r'|} \psi(r') = E \psi(r) \]

\[\rightarrow -\frac{1}{2m} \nabla^2 \psi(r) - \frac{1}{2} \int d^3r' \frac{\epsilon^2(r')}{|r - r'|} \psi(r') \]
7/11/2013

Define \(V_x(r) = \int d^3p' V_x(^3p', ^3p') \) as the local potential.

Kyle Wendt has developed this idea further, to apply beyond S-waves (which is all that survives the angular integral).

We'll sketch the result for the AV18 potential and look at the actual pictures later.

![Graph showing potential](image)

- S-wave: purely attractive local potential.
- Phase shift must fail to change sign.
- Non-local part at higher momentum.

![Graph showing potential](image)

- Tensor \(\Rightarrow \) highly suppressed.
- D-state probability changes greatly.
- But asymptotic D-S ratio unchanged.
- What about quad-cyclic moment?

Different potentials evolve to same in both momentum rep (at momentum below \(x \) and in local projection).

Where do you expect high energy contributions to go? \(\Rightarrow \)

\[A_{1S0} \to A_{1S0} + A_{1D0} \]

\[A_{1S0} \to A_{1S0} + A_{1D0} \]

\(\Rightarrow \) see slides (same thing here!)
\[\text{Wigner} \text{ } \text{chose } \text{for } \text{He} \text{-flow equation generator} \]
\[\text{use } \text{the diagonal of } H_0 \text{ in whatever basis you are in. } \text{E.g., } H_0 = T_{\text{rel}} + V_0(k,k) \text{ diagonal} \]

- Let's consider the general case with \(H_{ij} = e_i \), where we are labeling the basis elements \(|i\rangle, |j\rangle \).
 - Note that these could be plane waves, harmonic oscillators, 2-particle or more,...

\[\langle i | \frac{dH_0}{ds} | j \rangle = \frac{dH_{ij}}{ds} = \langle i | \left[H_{ij}, H_0 \right] | j \rangle \]

\[\text{insert } \sum_k \langle k | \text{ and we } H_0 | j \rangle = e_j \langle j |, \text{ etc.} \]

\[\Rightarrow \frac{dH_{ij}}{ds} = \sum_k (e_i - e_k - e_k + e_j) H_{ik} H_{kj} \leq \text{simple matrix multiplication} \]

We want to ask: what can we say about \(\frac{d}{ds} \sum_{ij} H_{ij}^2 \) ?
- This is the sum of the squares of the off-diagonal parts. Does it decrease?
 - The full sum is \(\sum_{ij} H_{ij}^2 = \sum_{ij} H_{ij} H_{ij} = Tr H_0^2 = \text{constant} \), the trace is invariant.

\[\text{So } \frac{d}{ds} \sum_{ij} H_{ij}^2 = -\frac{d}{ds} \sum_{ij} H_{ij}^2 \leq -2 \sum_{i \neq k} e_i (e_i - e_k) \]

\[\Rightarrow \text{except for degeneracies, off-diagonal elements } \sum_{i \neq k} H_{ik} \leq 0 \]
The use of T_{rel} instead of $H_{\text{int}} = T_{\text{rel}} + H_{\text{coul}}$ is ok for nuclear physics, at least in the momentum basis, because

$$T_{\text{rel}} \approx (M^2)_ij \Rightarrow H_{\text{int}} \approx T_{\text{rel}}$$

It can fail, though. See Wendt et al., with large Λ leading order forces,

\Rightarrow good example of decoupling.
\\textbf{Th2a.7} \\

- V_{low-k} RG equation - Bogner, Kuo, Schwemle (2001) \\

- based on requiring it half-off shell T matrix to be invariant with a change in cutoff on the sum over intermediate states. \\

\[
\begin{align*}
T(k', k, k^2) &= V_{\text{low}}(k, k') + \frac{3}{\pi} \int_0^{\Lambda} V_{\text{low}}(k, p) T(p, k^2) \frac{p^2 dp}{k^2 - p^2} \\
&\quad \text{half-on-shell because } k, k^2 \text{ but } p \ll k
\end{align*}
\]

For all $k' < \Lambda$, with principal value in rad,
\[
\text{cutoff} = \frac{V_{\text{low}}(k', k)}{\frac{3}{\pi} \int_0^{\Lambda} \frac{V_{\text{low}}(k, p) T(p, k^2) dp}{k^2 - p^2}}
\]

Take $\frac{dr}{dx} = 0 \Rightarrow \frac{dV_{\text{low}}(k', k)}{dx} = \frac{3}{\pi} \int_0^{\Lambda} \frac{V_{\text{low}}(k', p) T(p, k^2) dp}{k^2 - p^2}
\text{ derivation is not immediate, (see Bogner et al.)}
\]

\(\aleph\), partial wave SRG equation (with $G_5 = T_{hi}$)
\[
\frac{d}{\Delta x} V_{\Delta}(k, k') = \left(-\frac{4}{\Lambda^2} \right) (k^2 - k'^2)^2 V_{\Delta}(k, k') + \frac{3}{\pi} \int_0^{\Lambda} (k^2 + k'^2 - 2kq) \frac{dV_{\Delta}(k, q)}{dq} d\phi
\]

\[
\frac{d}{\Delta x} V_{\Delta}(k, k') = \left(-\frac{4}{\Lambda^2} \right) (k^2 - k'^2)^2 V_{\Delta}(k, k') + \frac{3}{\pi} \int_0^{\Lambda} (k^2 + k'^2 - 2kq) \frac{dV_{\Delta}(k, q)}{dq} d\phi
\]

\[
\text{Compare LHS: } T \text{ matrix for } V_{\text{low}} \text{ but just potential for SRG}
\]

\(\Rightarrow\) SRG much easier for $A > 2$ (otherwise need T matrix in all channels).
7/11/2013

"Can we get a Viola-like potential from the SAC flow equation by an appropriate choice of G_s? Yes!"

Use $\frac{dt}{ds} = [G_s, H_s]$, with G_s of form $\begin{pmatrix} \frac{\partial H_P}{\partial H_s} & 0 \\ 0 & \frac{\partial H_s}{\partial H_P} \end{pmatrix}$.

Choose Λ and then G_s is the running Hamiltonian with the off-diagonal blocks defined by Λ set equal to 0 so Λ and G are projection operators, $P + \Omega = I$.

Proof that this does what we want [Gubankova et al.]

A measure of off-diagonal coupling is $\Omega H_s P$

so this is the part that does the coupling. Note

$\Rightarrow \exists \frac{n}{n} \langle \frac{n}{n} (\Omega H_s P)^{+} (\Omega H_s P) \rangle = \text{Tr} [P H_s Q H_s P] > 0$ (since $\Omega^2 = \Omega$, $P^2 = P$)

$\Rightarrow \text{Tr} [P H_s Q H_s P] > 0$

Now check how this changes with s using $\frac{dt}{ds} H_s = [H_s, H_s]$

$\Rightarrow \frac{dt}{ds} \text{Tr} [P H_s Q H_s P] = \text{Tr} [P Q S (Q H_s Q H_s P - Q H_s H_s P)]$

$\Rightarrow \text{Tr} [P H_s Q H_s Q H_s (Q H_s P) P]$

you are invited to prove it.

$\Rightarrow -2 \text{Tr} [(Q H_s P)^{+} (Q H_s P)] \leq 0$

\Rightarrow the off-diagonal $Q H_s P$ block will decrease (or not increase) as s increases.

Two examples: $G_s = \text{Tr} \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right) \Rightarrow$ goes to $\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$

$G_s = \left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right) \Rightarrow$ goes to $\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right)$

Does it always evolve to the pattern of G_s? See pictures!
21/11/2003

SR6 Flow of Operators

- We'll have more to say about operators in a future lecture, just some basic ideas here.

- When we transform \(H_0 = U(s) H U_s^+ \), the wave functions also get transformed: \(\left| \psi_n^{s0} \right> = U(s) \left| \psi_n \right> \), so that energies are unchanged: \(E_n = \left< \psi_n^{s0} | H_0 | \psi_n^{s0} \right> = \left< \psi_n | H | \psi_n \right> \) .

- So this means that any operator \(O \) must be transformed:

\[
O_s = U(s) O U_s^+
\]

- We can calculate this directly by constructing \(U(s) \) and

- What we do this by first evolving \(H \to H_0 \), then finding all the eigenstates \(\left| \psi_n \right> \) of \(H \) and \(\left| \psi_n^{s0} \right> \) of \(H_0 \).

- Then we have: \(U(s)_n = \sum \left< \psi_n^{s0} | \psi_n \right> \left| \psi_n \right> \).

- In a basis like momentum space, this would give us the matrix element: \(\left< k' | U(s) | k \right> = \sum \left< \psi_n^{s0} | \psi_n \right> \left< \psi_n \right| \psi_n^{s0} \rangle \left| k' \right> \).

- just an outer product.

- This works fine in practice but there are two other ways:

 i) Evolve \(O_s \) with its own flow equation

 ii) Evolve \(U(s) \) " " " " " " " " and then use \(O_s = U(s) O U_s^+ \)

What are the equations? \(\Rightarrow \) you do that for exercises!
How do we know that SRG evolution of operators (including its Hamiltonian) must generate many-body terms?

- In exercises: Play about physics, here: formal discussion.

Consider 2nd quantization. This is defined with two ingredients:

1. A single-particle basis (e.g., plane waves in a box or HO wells).
2. A reference state that serves as the "vacuum".

Examples:
- Could be the actual vacuum
- Or a filled core (Fermi sea or a closed shell)

Kinetic energy: \(\hat{T} = \sum_i \frac{p_i^2}{2m} a_i^\dagger a_i \)

Two-body potential: \(\hat{V} = \sum_{ijkl} \delta_{ijkl} a_i^\dagger a_j^\dagger a_k a_l \)

3-body potential: \(\frac{1}{3!} \sum_{ijklm} V_{ijklm} a_i^\dagger a_j^\dagger a_k^\dagger a_l a_m a_n \)

These operators have anti-commutation relations:

\[\{ a_i, a_j^\dagger \} = a_i a_j^\dagger + a_j^\dagger a_i = \delta_{ij}, \quad \{ a_i, a_j \} = \{ a_i^\dagger, a_j^\dagger \} = 0 \]

Claim:
\[
\frac{d\hat{\rho}}{ds} = \sum_{g=1}^{-\infty} \left[\frac{\hat{L}}{g} \right]_{g=1}^{\infty} + \sum_{g=1}^{-\infty} \left[\frac{\hat{L}}{g} \right]_{g=1}^{\infty} + \sum_{g=1}^{-\infty} \left[\frac{\hat{L}}{g} \right]_{g=1}^{\infty}
\]

And this is just one time step.

- A 2-body operators generated
- Is this a problem?

If yes, we need to be able to truncate \(\Rightarrow \) need hierarchy

Also need to be able to calculate with minimal (usually 3-body)

SRG \(\Rightarrow \) Alternative: Pick a different reference state \(\Rightarrow \) reshuffles what is many-body!
11/1/2013

SRG technology is to evolve 3-body forces:

Three methods not exist:

1. evolve in a discrete harmonic oscillator basis
 (Eric Tjonnessen)

 \[\Rightarrow \text{applied to No-Core Shell Model (tomorrow)} \]

2. evolve in a partial-wave momentum basis
 (Kai Hebeler)

 \[\Rightarrow \text{separate evolution of 2 and 3 body parts} \]

3. evolve in a hyperspherical basis

 \[\Rightarrow \text{good features, visualization} \]

- more later on finite comparisons
- Recent: 4-body evolution (see Angelo Colci talk from Trento)

Oscillator evolution is in a 3-body Jacobi basis:

- generalization of center-of-mass and relative

\[\mathcal{L} = \frac{1}{2} \left(\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 \right) \]

- potential doesn't depend

\[\mathbf{p}_1 - \mathbf{p}_2 \]

- relative between 1 and 2:

\[\mathbf{r}_3 = \sqrt{3} \left(\mathbf{r}_1 + \mathbf{r}_2 \right) \]

- relative between 3 and com

\[\text{com of } 4 \text{ and } 5 \]

- hard part:

\[\text{must anti-symmetrize} \]

- H0 basis:

\[\left| \xi \right> = \left| \mathcal{N}_{a} - \mathcal{S}_{a} \right> \left| J_2 \right> \left| T \right> \]

\[\left| J_2 \right> \left| T \right> \]

- momentum space evolution

\[\left| p q \gamma \right| \Rightarrow \left| p q \gamma \right| \]

\[\left| p q \right| \]

\[\left| \left(L S \right) \right| \left(T_i \right) \left(T_f \right) \]