7/14/2013

Overview: We've introduced many threads in the first few days. All have connections — underlying themes — or else are foundations for upcoming topics.

It will become more evident as we proceed.

So please be patient even if it seems incoherent at times.

We need to develop in parallel so we can discuss impact.

In this lecture:

- Follow up on three-body forces and aspects of the EFT example of pointless EFT. => tie these together
- Continue with implications of the more complex features of the NN force (like tensor, spin-orbit) and in the simplest bound system: He deuteron.
Continuation of 3-body force introduction...

- We discussed the examples of the Earth-Moon-Sun system and the interaction of neutral atoms as places where the low-energy theory has three-body forces.

- The general feature is that three-body forces arise from the elimination of degrees of freedom if we included positions of individual masses or interactions between all electrons in two-body only, eliminating these variables (degrees of freedom) in favor of collective coordinates (center-of-mass position) required three-body forces.

- So what about the nuclear case?

 In this diagram two nucleons exchange a boson, maybe a pion, maybe a heavier meson, exciting.

 \[N N \rightarrow N^* \] (excited state of nucleon) for a brief period, \[N^* \] could mean a \(\Delta \), could mean something else.

 Suppose our theory had both \(N \)'s and \(N^* \)'s explicitly and was but no \(p, g, \omega \) (treated as heavy) and \(\rho, \sigma, \omega \) expanded as contact plus derivatives of contacts.

 \[N \rightarrow N + X \] would be diagrams included in the low-energy theory, but no 3-body, because \(\pi \), etc.

 In two successive 2-body interactions.

 \[\text{But now we eliminate } N^* \rightarrow \text{This is a 3-body force} \]

 \[3 \text{-body if can't be broken into successive two-body interactions} \]
3/4/2013

- When is it good to replace the N* excitation? When we don't resolve that it was excited.

 By the uncertainty principle, if we excite it, a virtual state, it can last for $\Delta t = \hbar/\Delta E$, which is short if ΔE is large. \Rightarrow Broad endpoint are close enough so they are not resolved \Rightarrow replace by contact + and derivatives.

 So this is a danger if $M_\Delta - M_N \approx 300$ MeV, then it will break down much sooner than for energy differences $\Delta 5000$ MeV (such as heavier meson exchanges).

 We will keep coming back to this.

 Expansion parameter $Q/(M_N M_\Delta)$ may be smaller than we want!

- How about a process like:

 \[\begin{array}{c}
 \text{time} \\
 \uparrow \\
 \text{time} \\
 \downarrow \\
 \hline \end{array} \]

 So the idea is that a nucleon emits a plan that becomes a nucleon-anti-nucleon pair at A. The anti-nucleon annihilates with a 3rd nucleon at B emitting a pion absorbed by a 3rd nucleon.

Class:

- In the previous case, we had $\Delta E \geq M_\Delta - M_N$. What is it here?

 Initially $3M_N + \text{kinetic}$, in the middle an extra $3M_N$
 $\Rightarrow \Delta E \geq 3M_N$, which is large $\Rightarrow \Delta t$ is small

 \[\begin{array}{c}
 \text{time} \\
 \uparrow \\
 \text{time} \\
 \downarrow \\
 \hline \end{array} \]

 is a 3-body force that is a good approximation.

Important:

- Γ or Σ may be good or bad or incomplete models — maybe it requires quarks and gluons to describe. As long as

 \[\begin{array}{c}
 \text{time} \\
 \uparrow \\
 \text{time} \\
 \downarrow \\
 \hline \end{array} \]

 contains all allowed (by symmetries) vertices, then we don't care — we will be model independent with our EFT!
7/4/2013

- Moral: whether we have a 3-body force or not and how large a contribution depends on our choice of degrees of freedom.

- But this includes when our cut-off eliminates nucleons from our low-energy theory.

\[
\begin{align*}
\text{Nucleons with momentum } &\quad p < \Lambda_1 \\
\text{Nucleons with } p < \Lambda_2 \\
\text{Nucleons with } \Lambda_1 < p < \Lambda_2 \\
\text{Plus longer range effects of nucleons with } \Lambda_1 < p < \Lambda_2 \\
\end{align*}
\]

\[\Rightarrow \text{even with just nucleons, two-body interactions become 3-body if we eliminate degrees of freedom (in this case by lowering } \Lambda)\]

- This is the same principles we had with } C_0(\Lambda) \text{ in the pinless theory:}

\[
\begin{align*}
\text{C_0 cutoff} &\quad \Lambda = \Delta \Lambda \text{ cutoff} \\
\text{C_0} &\quad \Lambda \leq \Delta \Lambda \\
\text{C_0} &\quad \Lambda \leq \Delta \Lambda \\
\end{align*}
\]

\[
\Rightarrow C_0(n) \frac{m}{2\pi} \int \frac{d^3 p}{p^2 + i\epsilon} \rightarrow \int_0^{\Delta \Lambda} d\Lambda \int_0^{\Delta \Lambda} d\Lambda \frac{C_0(n) m}{2\pi} \int \frac{d^3 p}{p^2 + i\epsilon}
\]

\[\text{Small}
\]

\[
\Rightarrow \text{The } x^x \text{ contribution for } \Lambda_c - \Lambda_c < q < \Lambda_c \text{ looks like a constant:}
\]

\[
\Rightarrow \text{ Change } C_0 \text{ to compensate } x \Delta C_0 = C_0(\Delta) \frac{m}{2\pi} (1 + \Lambda_n) \text{ or } \Delta C_0 = m^2 \frac{2\pi}{2\pi} (C_0(\Delta))
\]

\[\text{which is the RG equation from Achim's lecture! (sign does work!)}
\]

\[\text{(sign does work if } \Delta \Lambda < 0, \text{ then } C_0 \text{ decreases)}\]
7/14/2013

- How do we estimate truncation errors?
 - c.f. Legendre plots: the need to know how big the coefficients are.
 - For the natural (flow-breakdown) pioneerless theory \((\Lambda \approx M_{\Pi})\)
 "breakdown scale"

\[
\chi = \chi_0 + \chi_0^2 + \chi_0^3 + \chi_0^4 + \chi_0^5 + \chi_0^6
\]

\[
iT(k, \cos \theta) = -ic_0 - \frac{m}{\hbar \pi} C_0 k^2 + \frac{m}{\hbar \pi} C_0 k^2 + \frac{iZ}{\hbar \pi} C_0 k^2 - \frac{iZ}{\hbar \pi} (R \cos \theta)
\]

reproduces:

\[
\frac{-4\pi a_0}{m} \left[1 - i\alpha k + \left(\frac{a_0^2}{2} - \frac{a_0^3}{3!} \right) k^2 - \frac{4\pi a_0}{m} R \cos \theta + \frac{a_0^3}{3!} \right]
\]

\[
C_0 = \frac{4\pi}{m} a_0, \quad C_0 = \frac{4\pi}{m} a_0, \quad C_0 = \frac{4\pi}{m} a_0, \quad C_0 = \frac{4\pi}{m} a_0
\]

Power counting: diagrams contribute \(4^P\) where \(\nu = 5 - \frac{3}{2} E + \sum \sum (2i + 3n - 5) V_{ij}\)

where \(i = \# \text{ of derivatives}\)

- \(n = 2 \text{ for 2-body term, } 3 \text{ for 3-body term, ...}\)
- \(E = \# \text{ external lines}\)

\[
\left\{ \begin{array}{l}
\text{every extra } \text{ 3-body part!}
\end{array} \right.
\]

\[
C_{2i} \sim \frac{4\pi}{m} \frac{1}{(\Lambda)^{2i+1}}, \quad D_{2i} \sim \frac{4\pi}{m} \frac{1}{(\Lambda)^{2i+4}}
\]

\[
\Rightarrow \text{ estimates of how big coefficients are}
\]

\[
\Rightarrow \text{ just dimensional analysis with } \Lambda \text{ as momentum or length}
\]

"naive" \(\Rightarrow\) only \(\Lambda\) and natural: remaining coefficient is close to 1.

So even if \(\nu\) didn’t determine \(C_0\) and \(\Lambda\), we can estimate the contribution as \(\frac{4\pi}{m} \frac{1}{(\Lambda)^P}\) (since \(2i = 2 \text{ derivatives}\)).

\[
\Rightarrow \text{ truncation error } + \text{ we know that it will fail for } k \sim \Lambda
\]
7/14/2013

- In our pionless example we didn't mention spin, because we said the interaction was spin independent, but this doesn't mean spin doesn't play a role.
 - Because the wave function must be antisymmetric, if the spin part is symmetric \(|s_{1/2}, s_{1/2} \rangle \) or \(|s_{1/2}, -s_{1/2} \rangle \), then the wave function of two neutrons (isospin space symmetric \(T=1 \)) would vanish for separation \(\mathbf{R} = 0 \) (antisymmetry)
 - So the matrix element of \(G_{\delta} \) vanishes: \(\langle \mathbf{r}_1 / \mathbf{r}_2 | \delta_{i j} | \mathbf{r}_1 / \mathbf{r}_2 \rangle = 0 \)
 - So we really need to keep track of the spins as well on the legs of \(X \)

- What about including spin at leading order in the pionless EFT?
 - Consider neutrons only. A general term consistent with symmetries is
 \[
 V_{L0} = C_5 + C_7 \sigma_1 \cdot \sigma_2
 \]
 so we might expect two \(S \)-wave scattering lengths.
 - In the lagrangian \(L_{L0} = \cdots \frac{1}{2} g_{(1/2)}^\alpha (\mathbf{r} \cdot \mathbf{J}) \frac{1}{2} g_{(1/2)}^{\alpha \beta} (\mathbf{r} \cdot \mathbf{J}) \)
 \[
 = -\frac{1}{2} g_{(1/2)}^\alpha (\mathbf{r} \cdot \mathbf{J}) \frac{1}{2} g_{(1/2)}^{\alpha \beta} (\mathbf{r} \cdot \mathbf{J}) = \frac{1}{2} (\mathbf{r} \cdot \mathbf{J}) \mathbf{S} \cdot \mathbf{S}
 \]
 - If you did the Fierz rearrangement exercise, you would have found that these two terms are not independent
 - Thus, it's only one combination, again because of antisymmetry and contact interactions.

- In Achim's W1b notes, there is a nice alternative way to show this, which I'll repeat here.
7/14/2013

We can include antisymmetry in the potential by including the exchange term (with the appropriate minus sign).

\[V_{\text{antisym}} = (1 - \hat{P}_{12}) V \]

where \(\hat{P}_{12} \) is the exchange operator \(\hat{P}_{12} = \hat{P}_{21} = \hat{P}_{\text{spin}} \).

And \(\hat{P}_{\text{spin}} = \frac{1 + \vec{s}_1 \cdot \vec{s}_2}{2} \) (if you've never seen this, act with \(\hat{P}_{\text{spin}} \) on spin up's to verify).

\[V_{\text{antisym}} = (1 - \hat{P}_{\text{spin}})(C_s + C_T \hat{\sigma}_4 \hat{\sigma}_5) \quad \text{(no \(R, \vec{r}_1' \))} \]

\[
\begin{align*}
\text{use } (\hat{\sigma}_4 \hat{\sigma}_5) = & \frac{1}{2} \left[(C_{-3} - 3C_T)(\hat{\sigma}_4 \hat{\sigma}_5) \right] = \begin{cases} 0 & s = 1 \\
2(C_{-3} - 3C_T) & s = 0 \end{cases} \\
\text{as before from Eqs.} \\
\text{see Alex tomorrow!}
\end{align*}
\]

So any choices of \(C_s, C_T \) for which \(C_{-3} - 3C_T \) is the same will give the same result \(\Rightarrow \) only one independent constant.

Your choice, e.g., \(C_T = 0 \). So what we had with \(C_T = C_s \) was actually general at 10 for neutrons only. Also, see scattering length.

Now with spin and isospin: \(\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \} \), \(\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \} \), \(\{ \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \} \)

Anti-symmetry says only 2 independent. Choose which: (Fierz ambiguity)

Conventional choice: \(V_{NN}^{14} = C_s + C_T \hat{\sigma}_4 \hat{\sigma}_5 \) See Alex tomorrow!

At \(N = 0 \), 14 possible, but only 7 linearly independent. Usual choice:

\[V_{NN}^{14} = C_2 \frac{1}{2} (\hat{r} \cdot \hat{k}) + C_4 \hat{r} \cdot \hat{k} + C_5 \frac{1}{2} (\hat{r} \cdot \hat{k}) \hat{\sigma}_4 \hat{\sigma}_5 + C_6 \hat{r} \cdot \hat{k} \hat{\sigma}_4 \hat{\sigma}_5 \]

\[+ i C_7 \frac{1}{2} (\hat{\sigma}_4 + \hat{\sigma}_5) \cdot (\hat{r} \times \hat{k}) \Rightarrow \text{spin-orbit interaction (Exercise)} \]

\[+ C_8 \hat{\sigma}_4 \cdot (\hat{r} \times \hat{k}) \hat{\sigma}_4 \hat{\sigma}_5 \hat{r} \hat{k} \Rightarrow \text{lead to tensor interaction} \]
Where does the tensor interaction in pionless EFT come from?

- One source is the pion, and the pion tensor interaction has important effects on nuclear structure.

- Let's do a quick derivation of the one-pion exchange potential starting from the interacting Hamiltonian density

\[\hat{H}_{\text{int}} = \frac{g_A}{2} \mathbf{N}^T \mathbf{\sigma} \cdot (\mathbf{\nabla} \phi) \mathbf{N} \] (lots of hidden indices!)

To a quantized form

\[\hat{H}_{\text{int}} = -i \frac{g_A}{2\pi} \int \frac{d^4k}{(2\pi)^4} \mathbf{b}^\dagger (k,m_\pi^2) \mathbf{b} (k,m_\pi^2) \hat{\mathbf{\sigma}} \cdot \hat{q} (r) \]

\[\mathbf{b} (k,m_\pi^2) = \sum_{i=1,2,3} \mathbf{b}_i (k,m_\pi^2) \]

\[\mathbf{b}_i (k,m_\pi^2) = \mathbf{B}_{i}^\dagger (k,m_\pi^2) \mathbf{B}_{i} (k,m_\pi^2) \]

\[\mathbf{B}_{i} (k,m_\pi^2) = \mathbf{N}_{m_\pi,n_i} \]

\[\mathbf{N}_{m_\pi,n_i} = \text{create pion in isospin state } i \]

\[\mathbf{b}^\dagger (k,m_\pi^2) = \text{pion absorbed} \]

\[\hat{\mathbf{\sigma}} \cdot \hat{q} (r) \]

Time-ordered perturbation theory (2nd order)

\[\langle \mathbf{R} | W_{\text{eff}}^{(1)} | \mathbf{F}_k \rangle = \sum_{n_1} \langle \mathbf{R} | \mathbf{H}_{\text{int}} | n_1 \rangle \langle n_1 | \mathbf{H}_{\text{int}} | \mathbf{F}_k \rangle \]

\[\langle \mathbf{R} | \mathbf{H}_{\text{int}} | n_1 \rangle = -\frac{1}{w_q} (\frac{g_A}{2\pi}) \partial_q \cdot \partial_q (\frac{-\hat{q} \cdot Q}{w_q}) \partial_q \cdot \partial_q \]

\[\langle n_1 | \mathbf{H}_{\text{int}} | \mathbf{F}_k \rangle = \text{sum over } \hat{q} \cdot Q (\frac{w_q}{\partial_q \cdot \partial_q}) \partial_q \cdot \partial_q \]
Putting it together, this is a local potential (no particle exchange at long distance):

\[V_{\omega\pi E}(Q, k) = V_{\omega\pi E}(q = k - Q) \]

\[= -\frac{g^2}{(2\pi Z)^2} \frac{\sigma_+ \cdot q \sigma_+ \cdot q_+}{2\pi^2} \frac{q_2}{m^2} \]

\[= -\frac{g^2}{4\pi^2} \frac{\sigma_+ \cdot q \sigma_+ \cdot q_+}{q^2 + m^2} \]

In the exercises for today, you carry out the Fourier transform showing:

\[\int \frac{d^3q}{(2\pi)^3} \frac{1}{2m^2} e^{iq \cdot r} = \frac{1}{4\pi r} \]

(standard, but remind yourself) and then evaluating the derivatives in \(\sigma \cdot q \). The bottom line is:

\[V_{\omega\pi E}(r) = \frac{m^2}{12\pi} \left(\frac{1}{(2\pi)^3} \right) \left[3T(r)S_{\omega\pi}(r) + Y(r)\sigma_+ \cdot \sigma_2 \right] \]

where:

\[T(r) = \frac{e^{-m_\pi r}}{m_\pi r} \left(1 + \frac{2}{3} \frac{m_\pi r}{m_\pi r} + \frac{3}{(m_\pi r)^2} \right) \]

\[Y(r) = \frac{e^{-m_\pi r}}{m_\pi r} \]

and

\[S_{\omega\pi}(r) = \left[(\sigma_+ \cdot r)(\sigma_+ \cdot r) - \frac{1}{2} \sigma_+ \cdot \sigma_2 \right]. \]
Let's talk a bit about the impact of the tensor force on NN bound states.

- **nn** and **pp** have no bound states
- **np** has one shallow bound state (large scattering length)
 \[\Rightarrow \text{deuteron } T=0 \]
- What's special about \(T=0 \)?

Deuteron properties: (measured!)
- binding energy \(-2.3245\pm0.019\) MeV small!
 \[\Rightarrow \text{rms radius } R_{\text{rms}}^2 = 1.976(21) \text{ fm} \text{! large! (large tail)} \]
- \(J^P=1^+ \) (angular momentum 1, parity +)
- isospin \(T=0, M_T=0 \) (np)
- electric quadrupole moment \(Q_d = 0.085(3) e \text{ fm}^2 \geq 0 \)

- Two spins \(\frac{1}{2} \) nuclei \(\Rightarrow S=0,1 \) \(J-1<\ell<\ell+1 \Rightarrow \ell=0,1,2 \)
 - parity + \(\Rightarrow \ell=0,2 \) \(\Rightarrow \) space symmetric so \(S=1 \)
 - So \(^3S_1, ^3D_1 \) possible
- Expect \(^3S_1 \) energetically but \(Q_d \neq 0 \Rightarrow l=2 \) admixture
 \[\Rightarrow \text{tensor force mixes } ^3S_1-^3D_1, \text{ (recall Tab)} \]
 - Attractive tensor \(\Rightarrow \) extra binding (ft. nn)

Is attractive tensor in \(T=0 \) consistent with \(Q_d > 0 \)?
- Like magnetic dipole-dipole
 \[S = e(3\hat{r} \cdot \hat{r}) e^0(3\hat{r} \cdot \hat{r} - 1) \Rightarrow \text{QD} \Rightarrow \langle \phi^2 > > \langle \phi^0 > \]
 \[\Rightarrow \text{prolate} \Rightarrow Q_d > 0 \]
 - at attractive repulsive
- Unlike spins \((m_S=\pm) \) prefer to be oriented head-to-tail

- Wave functions: \(S \)-wave \(n(0) \), \(D \)-wave \(|0\rangle \) ports
 \[n(0) \rightarrow A \text{e}^{-\gamma r} \]
 \[\text{binding momentum } x = -2 E_1 \]
 \[\Rightarrow \text{Asymptotic normalization} \{\text{measured}\} \]