Lecture QCD

will develop and work with EFT of QCD

Comedown to QCD and it's symmetry important throughout the lecture

⇒ brief introduction to the theory of strong interactions

Quantum Chromodynamics

\[
\mathbb{D}_{\text{QCD}} = \bar{\Psi}_i \left(i \gamma^m D_m \right) \Psi_j - m_i \delta_{ij} \Psi_j - \frac{1}{4} F_{\mu \nu}^a F^{\mu \nu a}
\]

\[
\partial_\mu A^a_\mu \Psi_j = \partial_\mu A^a_\mu \Psi_j + g f_{abc} A^b_\mu A^c_\mu
\]

Input: quark masses and \(g \)

<table>
<thead>
<tr>
<th>Quark</th>
<th>Charge</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u) (up)</td>
<td>(+\frac{2}{3})</td>
<td>2-3 TeV</td>
</tr>
<tr>
<td>(d) (down)</td>
<td>(-\frac{1}{3})</td>
<td>4-6 TeV</td>
</tr>
<tr>
<td>(c) (charm)</td>
<td>(+\frac{2}{3})</td>
<td>1.3 GeV</td>
</tr>
<tr>
<td>(s) (strange)</td>
<td>(-\frac{1}{3})</td>
<td>100 MeV</td>
</tr>
<tr>
<td>(t) (top)</td>
<td>(+\frac{2}{3})</td>
<td>170 GeV</td>
</tr>
<tr>
<td>(b) (bottom)</td>
<td>(-\frac{1}{3})</td>
<td>4.5 GeV</td>
</tr>
</tbody>
</table>

Comparison with QED

QED

\(e^+ e^- \rightarrow \text{quark} \)

QCD

\(e^+ e^- \rightarrow \text{quark} \)

\(1 \) photon \(\rightarrow \) 8 gluons (massless)

\(\text{gauge group} \rightarrow SU(3) \)
Forces between quarks mediated by massless gluons

\[g^2 \frac{1}{4\pi} = \alpha_s \text{ strong coupling} \]

Compared to \(\frac{e^2}{4\pi} = \frac{1}{137} \text{ in QED} \)

Running coupling

QED:
- Electric charge: scattering microscopically effective charge at short distance
- High momentum scale \(Q \)

- Coupling strength changes with scale "running coupling" (\(\Rightarrow \) key concept for nuclear forces)

QCD:
- Color anti-screening leads to

\[\frac{1}{\alpha_s(Q)} = \frac{33 - 2N_f}{6\pi} \log \frac{Q}{\Lambda_{\text{QCD}}} \]

\(\Lambda_{\text{QCD}} = \text{scale of QCD} \)

\(\Lambda_{\text{QCD}} \approx 200-400 \text{ MeV} \)

\(\Rightarrow \) asymptotic freedom

\(\Rightarrow \) input to QCD: mass, \(\Lambda_{\text{QCD}} \) instead of \(g \)

For chiral limit: mass \(\to 0 \), \(\Lambda_{\text{QCD}} \to \infty \), QCD is only scale
QCD is nonperturbative at low energies \[\Rightarrow \text{EFT for nuclear forces} \]
leads to 1) Confinement and 2) chiral symmetry breaking
- quarks cannot be isolated, confined to color singlet (colored) hadrons
- energy to separate \(q \bar{q} \): \(E = \frac{1}{r} \)
 - string tension \([r] \Rightarrow E \text{ is sufficient to break} q \bar{q} \text{ flux as} r \text{ increases, new} q \bar{q} \text{ pair created}
- degree of freedom at low energies are hadrons

masses of hadrons
- bosons: mesons \(\pi, \rho \ldots \) form as hadron of \(u \bar{d} \) quarks
- fermions: baryons \(N, D \ldots \)

\(m_{\text{hadron}} \sim 1 \text{ GeV}, \text{ except for light} \pi, K \)

\[\Lambda_{\text{QCD}} \gg m_u, m_d \Rightarrow \text{can treat} \Lambda_{\text{QCD}} \text{ as standard} QCD \text{ kilogram} \]

QCD symmetry of quarks \[\Rightarrow \text{symmetry in hadron spectrum} \]
- \(m_u = m_d \Rightarrow u \bar{d} \) quark form isospin multiplets
 \(|u> = |\text{isospin} 0> = |T_3 = \frac{1}{2} \rangle \)
 \(|d> = |\text{isospin} 0> = |T_3 = -\frac{1}{2} \rangle \)
- isospin operator \[I^3 = \frac{1}{2} \] with Pauli matrix, \(T_3 \).
Isospin symmetry (approximate symmetry because \(m_u \neq m_d \))

clearly seen in hadron spectrum

Baryons:

\[\text{Nucleon} \quad N \left(\frac{1}{2}^- \right) \]
\[940 \text{ MeV} \]

\[|n> = |T=1/2, M_T = -1/2> \quad \text{dud} \]
\[|p> = |T=1/2, M_T = +1/2> \quad \text{umd} \]

Isospin doublet is nontrivial part (\(S=0 \)) of baryon octet

\[\Delta \left(3^+ \right) \]
\[1232 \text{ MeV} \]
\[\text{ddd, udd, uuu} \text{ or \(\Delta^+ \)} \]
\[|T=3/2, M_T = -3/2, -1/2, 1/2, 3/2> \]

Isospin octet of baryon decuplet

Simple constituent quark mass model:

\[m_N = 3 \cdot m_{\text{constituent}} - \text{diquark ud \(S=0 \) binding} \]
\[B_{\text{diquark}} = 300 \text{ MeV} \]

Mesons:

Pseudoscalar:

\[\pi \left(0^- \right) \]
\[140 \text{ MeV} \]
\[|T=0, M_T = 0> \]

Vector mesons:

\[g \left(1^- \right) \]
\[770 \text{ MeV} \]
\[|g> \]

Meson masses:

\[m_{\pi} \approx 2 \cdot m_{\text{constituent}} = 800 \text{ MeV} \quad \text{O.K.} \]

but \(m_{\pi} = 140 \text{ MeV} \ll 2 \cdot m_{\text{constituent}} - B_{\text{diquark}} = 500 \text{ MeV} \]
\[Z_q = \bar{u} i D u + \bar{d} i D d = \bar{u}_L i D u_L + \bar{u}_R i D u_R + \bar{d}_L i D d_L + \bar{d}_R i D d_R \]

Squarks decomposed into left- and right-handed quarks

\[\Rightarrow Z_{QCD} \text{ is symmetric under independent rotations in } u_d \text{ space of } L-R \text{- handed quarks} \]

Symmetry: \(\text{SU}(2)_L \times \text{SU}(2)_R \times \text{U}(1)_Y \times \text{U}(1)_A \)

\[= \text{SU}(2)_{L-R} \times \text{U}(1)_Y \times \text{U}(1)_A \]

- Vector
- Axial
- Isospin
- Chiral
- Baryon number symmetry

\[\text{SU}(2)_{\text{isospin}} \text{ is present in hadron spectrum} \]

\[\text{SU}(2)_{\text{axial}} \text{ implies degenerate parity partners} \]

\[
\text{e.g., for the nucleon } N(\frac{1}{2}^+) \text{ and } N(\frac{3}{2}^-) \\
\]

\[
m_N^{\frac{1}{2}^+} = 940 \text{ MeV} \quad m_N^{\frac{3}{2}^-} = 1535 \text{ MeV} \\
\]

\[\Rightarrow \text{Chiral symmetry is spontaneously broken in the QCD ground state vacuum} \]

In addition, \(\text{SU}(2)_A \) is explicitly broken by \(m_u, m_d \neq 0 \) mixes, \(L, N \)

\[Z_{QCD}^{u, d} = -\bar{u}_L m_u u_L - \bar{d}_L m_d d_L - \bar{u}_R m_u u_R - \bar{d}_R m_d d_R \]
Spontaneous symmetry breaking

Effective potential is symmetric \Rightarrow broken rotational symmetry

- Physical ground state breaks symmetry
- Low-energy excitations in original symmetry direction cost very little energy $E \propto k^2$
- For low momenta $k = \frac{l}{\lambda}$
- Long wavelengths λ
 \Rightarrow Spontaneous symmetry breaking leads to massless Goldstone bosons

Light pions are Goldstone bosons of chiral symmetry breaking

Gell-Mann-Oakes-Renner relation $m_\pi^2 \sim m_q$

Finite pion mass due to explicit chiral symmetry breaking

Other examples: $S\bar{S}$ and Goldstone bosons

- Symmetry
- Broken symmetry
- Goldstone boson
- ϕ
- Crystal translations
- Magnon rotations

$\phi \overleftrightarrow{\phi}$

In addition to the light pions, chiral symmetry breaking is responsible for the dynamical mass generation of mesons $\sim 300\text{ MeV}$ to $\sim 1\text{ GeV}$

QCD phase diagram

- At high temperature and density $= $ high momenta \Rightarrow asymptotic freedom
- Transition to deconfinement and chiral symmetry restoration
- Quarks and gluons become free of their confinement into hadrons
- Energetic QCD at zero chemical potential for $T \gtrsim 170\text{ GeV} \sim 10^{12}\text{ K}$

We will focus on the low T, low baryon density region of the QCD phase diagrams \Rightarrow degrees of freedom: nucleons and pions (and Δs)
Units

We will work in units with \(\hbar = c = 1 \)

Use \(\hbar c = 197.327 \text{ MeV\cdot fm} \) to convert \(\text{MeV} \rightarrow \text{fm^{-1}} \)

\[\text{e.g. pion mass } m_{\pi} = 140 \text{ MeV} = \frac{140 \text{ MeV}}{\hbar c} = 0.7 \text{ fm}^{-1} \]

Useful to remember
\[\frac{\hbar c^2}{m} = \frac{\hbar e^2}{m c^2} = 41.4 \text{ MeV fm}^2 \]

Naive dimensional analysis and naturalness

Example: Radius \(r \) and energy \(E \) of hydrogen-like atom \(\text{He}^+_2 \)

Reduced mass \(\mu = \frac{m_e m_n}{m_e + m_n} \)

What can \(r \) and \(E \) depend on? \(\mu \) relevant quantities

\[\mu \]

Reduced mass \(\mu \)

\[\text{ Coulomb potential } V(r) = -\frac{k e^2}{r} \]

\[\text{Quantization } \hbar \]

\[r \sim \frac{\hbar^2}{k_e^2 \cdot \mu} \quad \text{and} \quad E \sim \frac{-k e^2}{r} = \frac{(k e^2)^2 m_e}{\hbar^2} \]

\[\mu = \frac{m_e}{2} \text{ Bohr radius} \]

Quantum: \(r = \frac{a_0}{2} \)

\[\text{Quantum constant } \frac{1}{2} \]

So constant -1 = 1

NDA often allows one to estimate the answer and scaling law up to an overall factor that is usually of \(O(1) \) \(\Rightarrow \text{ naturalness} \)