The G^0 Forward-Angle Measurement of Parity Violating Asymmetries in $\bar{e}p$ Elastic Scattering

Stephen Pate, New Mexico State University
for the G^0 Collaboration

Workshop on Precision ElectroWeak Interactions
College of William and Mary
16 August 2005

Virtually all slides are from Doug Beck's 17-June-2005 data release seminar at JLab.
G0 Collaboration

1College of William and Mary, 2Institut de Physique Nucléaire d’Orsay, 3Yerevan Physics Institute, 4Laboratoire de Physique Subatomique et de Cosmologie-Grenoble, 5University of Illinois, 6University of Maryland, 7Thomas Jefferson National Accelerator Facility, 8University of Manitoba, 9Carnegie Mellon University, 10California Institute of Technology, 11University of Kentucky, 12TRIUMF, 13Louisiana Tech University, 14Virginia Tech, 15University of Northern British Columbia, 16New Mexico State University, 17University of Winnipeg, 18Hampton University, 19Grinnell College

DHB, 17 June 2005
Experimental setup
G0 Experiment Overview

- Measure G_E^Z, G_M^Z
- different linear combination of u, d, and s contributions
- strange quark contributions
- recoil protons for forward measurement
- electrons for backward measurements
- elastic/inelastic for 1H, elastic for 2H

Forward measurements complete (101 Coulombs)

- Measure G_E^Z, G_M^Z
- different linear combination of u, d, and s contributions
- strange quark contributions
- recoil protons for forward measurement
- electrons for backward measurements
- elastic/inelastic for 1H, elastic for 2H
Polarized Injector/Accelerator

- Challenging specifications – all met!
 - 32 ns pulse spacing for t.o.f.
 - 40 µA beam current
 - higher bunch charge
 - run concurrently with small energy spread for Hall A

<table>
<thead>
<tr>
<th>Beam Parameter</th>
<th>Achieved</th>
<th>“Specs”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge asymmetry</td>
<td>-0.14 ± 0.32 ppm</td>
<td>1 ppm</td>
</tr>
<tr>
<td>x position differences</td>
<td>3 ± 4 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>y position differences</td>
<td>4 ± 4 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>x angle differences</td>
<td>1 ± 1 nrad</td>
<td>2 nrad</td>
</tr>
<tr>
<td>y angle differences</td>
<td>1.5 ± 1 nrad</td>
<td>2 nrad</td>
</tr>
<tr>
<td>Energy differences</td>
<td>29 ± 4 eV</td>
<td>75 eV</td>
</tr>
</tbody>
</table>

New Tiger laser system for G0

JLab polarized injector

DHB, 17 June 2005
Leakage Beam Measurement

- Use "cut0" region in actual data to measure leakage yield, asymmetry throughout run
- Cut0 certified during test runs with only leakage beam
 - Uncertainty determined in 3 ways
 - Compare lumi monitor (direct) measurements to cut0
 - Cut3 asymmetry independent of beam current (10, 20, 40 μA)
 - Variation of corrected cut3 asymmetry (should be constant over run)
 - Methods consistent at 20% level
- $\delta A_{\text{false, leak}} = -0.71 \pm 0.14$ ppm

<table>
<thead>
<tr>
<th>I (μA)</th>
<th>$A_{3,\text{meas}}$ (ppm)</th>
<th>$A_{3,\text{corr}}$ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.14 ± 0.43</td>
<td>-2.5 ± 0.43</td>
</tr>
<tr>
<td>20</td>
<td>-29.6 ± 2.1</td>
<td>-7.2 ± 2.1</td>
</tr>
<tr>
<td>10</td>
<td>-51.3 ± 3.9</td>
<td>-9.5 ± 3.9</td>
</tr>
</tbody>
</table>

DHB, 17 June 2005
Beam Polarization

- Beam polarization measured with interleaved Möller measurements
 - std Hall C polarimeter
 (M. Hauger, et al. NIM A462 (2001) 382.)
 - apply for groups of runs as shown
 - average: $P = 73.7\%$

<table>
<thead>
<tr>
<th>Source</th>
<th>Rel. uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>0.42</td>
</tr>
<tr>
<td>Leakage</td>
<td>0.2</td>
</tr>
<tr>
<td>Current extrap’n</td>
<td>1</td>
</tr>
<tr>
<td>Beam</td>
<td>0.52</td>
</tr>
<tr>
<td>Levchuk</td>
<td>0.3</td>
</tr>
<tr>
<td>Detection</td>
<td>0.35</td>
</tr>
<tr>
<td>Total</td>
<td>1.32</td>
</tr>
</tbody>
</table>
Timing in the Experiment

Accelerator pulse structure

Beam Helicity

1/30 s

~500 μs

“Macropulse”

“Quartet”

Helicity +---+ or -+++ (random)

Measurement timing

Typical t.o.f. spectrum
20 cm LH$_2$, aluminum target cell
longitudinal flow, $v \sim 8$ m/s, $P > 1000$ W!
negligible density change < 1.5%
measured small boiling contribution
 - 260 ppm/1200 ppm statistical width
Spectrometer Optics

- zero magnification along beam axis
- elastic protons dispersed in Q^2 along focal surface

- acceptance $0.12 < Q^2 < 1.0$ GeV2 for 3 GeV incident beam

- detector 15 acceptance: $0.44 - 0.88$ GeV2
 - 3 Q^2 bins at 0.51, 0.63 and 0.78 GeV2
- detector 14: $Q^2 = 0.41, 1.0$ GeV2
- det. 16: no elastic acceptance
 - important for measuring backgrounds
Detectors

- 16 detectors per octant
- Arc shape (const. Q^2), protons at normal incidence
 - Each detector: scintillator pair
 - BC408: 0.5, 1.0 cm thick
 - 1/8 in. shielding in-between
 - PMT at each end of each scintillator
 - XP2262B (NA), XP2282B (Fr)
 - Signal: mean-time-front AND mean-time-back
- Assembled with ~ 2 mm accuracy
- Octants in light-tight enclosures

DHB, 17 June 2005
Electronics

- Measure time-of-flight target to detectors
- Counting rates \leq 4 MHz per scintillator pair
- Fast time encoding
 - NA: dual 500 MHz shift registers \rightarrow scalers (1 ns resolution)
 - “latching time digitizer” (LTD)
 - Fr: flash TDC \rightarrow DSP \rightarrow scalers (1/4 ns resolution)

DHB, 17 June 2005
Electronics Deadtime Corrections

- Residual effect on asymmetry
 - scale factor

\[
A_{\text{meas}} = \frac{R_+ (1 - \tau R_+) - R_- (1 - \tau R_-)}{R_+ (1 - \tau R_+) + R_- (1 - \tau R_-)}
\]

\[
\approx A \left(1 - \tau \frac{R_+ + R_-}{2} \right)
\]

- \(A \) is sum of physics and charge asymmetries
 - helicity-correlated beam current changes corrected in linear regression analysis
 - correction for residual effect \(\sim 0.05 \pm 0.05 \) ppm (pt-pt systematic unc.)

DHB, 17 June 2005
Analysis
Analysis Overview

Blinding Factor

- Raw Asymmetries, A_{meas}

 "Beam" corrections:
 - Leakage beam asymmetry
 - Helicity-correlated beam properties
 - Deadtime
 - Beam polarization

Background correction

Unblinding

- Q^2

Elastic form factors

$G_E^s + \eta G_M^s$
Forward Data Summary

• 101 Coulombs of parity-quality beam
 - cuts on helicity-correlated beam parameter are
 4 x std. dev. for given run:

Quantity	Std. dev.
charge asymmetry	600 ppm
x, y position differences	8, 10 µm
x, y angle difference	0.6, 1.1 µrad
energy difference	7.5 keV

• Includes running with both Hall A and Hall B (leakage beam asymmetry measured satisfactorily)

• Corresponds to: 701 h at 40 µA
 19 x 10^6 quartets
 76 x 10^6 MPS

DHB, 17 June 2005
Statistical Properties of the Data

- Asymmetry distributions very clean over range of 10^5

- Measured and expected widths agree at few % level
Helicity-Correlated Beam Parameters

- Response of spectrometer to beam changes well understood
- Average helicity-correlated beam parameters very small
- False asymmetries due to helicity-correlated beam parameters very small
 - overall about \(-0.02\) ppm
 - largest is \(0.01\) ppm from residual charge asymmetry
 - uncertainties small as well: \(0.01\) ppm

DHB, 17 June 2005
Background Overview

- Measure yield and asymmetry of entire spectrum
- Correct asymmetry according to

\[A_{\text{meas}} = (1 - f)A_{\text{el}} + fA_{\text{back}} \]

where \(A_{\text{el}} \) is the raw elastic asymmetry,

\[f = \frac{Y_{\text{back}}}{Y_{\text{meas}}} \]

- Actual analysis: \(f = f(t) \)
 - det. 1-14
 - fit \(Y_{\text{back}} \) (polynomial of degree 4), Gaussian for elastic peak
 - then fit \(A_{\text{back}} \) (polynomial of degree 2), constant \(A_{\text{el}} \)
 - det. 15
 - interpolate over detectors for \(Y_{\text{back}}, A_{\text{back}} \)
 - fit 3 constants for \(A_{\text{el}} \)
Det 1-14 Background

- Results of 2-step fitting procedure: det 8
 - fit Y_{back} (polyl of degree 4), Gaussian for elastic peak
 - then fit A_{back} (polyl of degree 2), constant A_{el}
 - example fits
 - yield: $\chi^2 = 31.1/40$
 - asym: $\chi^2 = 37.5/44$
 - f determined from Y_{back}, Y_{meas} in subsequent analysis
 - don’t use detailed shape of elastic peak

- Det 14 similar except it has 2 elastic peaks
 - $Q^2 = 0.41, 1.0 \text{ GeV}^2$
Det. 1-14 Background Uncertainty

- Statistical uncertainty includes that from A_{el} and from A_{back}

\[A_{meas} = (1 - f)A_{el} + fA_{back} \]

- Systematic uncertainty: general philosophy
 - vary background yield and asymmetry over plausible ranges
 - consider distributions of results for A_{el}
 - unweighted
 - weighted by χ^2
 - systematic uncertainty is average of std. dev. of these two distributions
Det. 1-14 Background Uncertainty

- Background yield varied within “lozenge”
 - use a variety of shapes

- Similar approach for asymmetry
 - vary throughout range
Correlations in Det 1-14 Backgrounds

- Separate point-to-point (pt-pt) uncertainties in background correction from global uncertainties
 - e.g. changing from linear to quadratic model for background asymmetry changes all det. 1-14 asymmetries downward on average

- Again using the distributions of results for $A_{e;i}$
 - calculate correlation coefficient
 - correlated uncertainty is change in centroid of distribution for given background model compared to width of overall distribution

\[
\Delta^2 A_{e;i,pt} = \Delta^2 A_{e;i,pt-rt} + \frac{3}{4} \Delta^2 A_{e;i,sys,rt} = \frac{3}{4} \Delta^2 A_{e;i,sys,pt}
\]

For det. 1-14
Det. 15 Background Yields

- Elastic protons shifted to lower t.o.f.
- Elastic peak broadened because of increased Q^2 acceptance
- Interpolate over detector range 12-14, 16
 - take out changing acceptance first

DHB, 17 June 2005
Positive Background Asymmetries

- Det. 12-16 see smoothly varying peak in background asymmetries
 - maximum magnitude ~ +45 ppm

- Source is protons from hyperon weak decay scattering inside spectrometer
 - GEANT simulation with generator for hyperon production based on CLAS data
 - simulate both Λ and $\Sigma^{+\,0}$ decays
 - polarization transfer for Λ 100%
 - assume 70% for Σ^+
 - Σ^0 asymmetry scaled by further factor of $-1/3$ (CG coefficient)
 - simulation explains source; use measured data for actual analysis
Positive Background Asymmetries: GEANT

Det 13

Det 14

Det 15

Det 16

\[\text{Asymmetry (ppm)} \]

\[\text{ToF (ns)} \]

DHB, 17 June 2005
Det. 15 Background Asymmetry

- Use smoothed interpolation of A_{back} from det. 12-14, 16
- Uncertainties are ± 1 detector AND ± 0.5 ns time shift

DHB, 17 June 2005
Det. 15 Asymmetry

- Compare interpolated background asymmetry and data
Correlations in Det. 15 Backgrounds

- Separate point-to-point (pt-pt) uncertainties in background correction from global uncertainties
 - in det. 15, correlations larger because bins are contiguous

- Consider distributions of results for A_{el}
 - for variety of randomly generated models determine correlation coefficient

- For det. 15

\[\Delta^2 A_{el,sys} = \Delta^2 A_{el,pt-pt} + \Delta^2 A_{el.glob} \]

\[\Delta^2 A_{el,pt-pt} = \frac{1}{2} \Delta^2 A_{el,sys} \]

\[\Delta^2 A_{el.glob} = \frac{1}{2} \Delta^2 A_{el,sys} \]
Dilution factor and Background Asymmetry

- Smooth, systematic progression
 - dilution factor
 - background asymmetry
 - both averaged over t.o.f. for demonstration
GO results
Experimental Results

- A_{phys} corrected for all beam, electronics, background factors

<table>
<thead>
<tr>
<th>Det</th>
<th>Q^2 (GeV2)</th>
<th>A_{phys} (ppm)</th>
<th>ΔA_{stat} (ppm)</th>
<th>$\Delta A_{\text{sys,pt}}$ (ppm)</th>
<th>$\Delta A_{\text{sys,glob}}$ (ppm)</th>
<th>f (ppm)</th>
<th>ΔA_{meas} (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.122</td>
<td>-1.513</td>
<td>0.436</td>
<td>0.224</td>
<td>0.176</td>
<td>0.061</td>
<td>-1.380</td>
</tr>
<tr>
<td>2</td>
<td>0.128</td>
<td>-0.972</td>
<td>0.409</td>
<td>0.198</td>
<td>0.173</td>
<td>0.084</td>
<td>-1.070</td>
</tr>
<tr>
<td>3</td>
<td>0.136</td>
<td>-1.298</td>
<td>0.424</td>
<td>0.174</td>
<td>0.170</td>
<td>0.085</td>
<td>-1.340</td>
</tr>
<tr>
<td>4</td>
<td>0.144</td>
<td>-2.707</td>
<td>0.433</td>
<td>0.183</td>
<td>0.176</td>
<td>0.077</td>
<td>-2.670</td>
</tr>
<tr>
<td>5</td>
<td>0.153</td>
<td>-2.223</td>
<td>0.431</td>
<td>0.284</td>
<td>0.214</td>
<td>0.096</td>
<td>-2.460</td>
</tr>
<tr>
<td>6</td>
<td>0.164</td>
<td>-2.880</td>
<td>0.434</td>
<td>0.324</td>
<td>0.234</td>
<td>0.100</td>
<td>-3.130</td>
</tr>
<tr>
<td>7</td>
<td>0.177</td>
<td>-3.949</td>
<td>0.426</td>
<td>0.251</td>
<td>0.205</td>
<td>0.110</td>
<td>-4.470</td>
</tr>
<tr>
<td>8</td>
<td>0.192</td>
<td>-3.850</td>
<td>0.485</td>
<td>0.218</td>
<td>0.192</td>
<td>0.110</td>
<td>-5.010</td>
</tr>
<tr>
<td>9</td>
<td>0.210</td>
<td>-4.683</td>
<td>0.475</td>
<td>0.258</td>
<td>0.212</td>
<td>0.116</td>
<td>-5.730</td>
</tr>
<tr>
<td>10</td>
<td>0.232</td>
<td>-5.267</td>
<td>0.505</td>
<td>0.301</td>
<td>0.232</td>
<td>0.136</td>
<td>-6.080</td>
</tr>
<tr>
<td>11</td>
<td>0.262</td>
<td>-5.260</td>
<td>0.520</td>
<td>0.108</td>
<td>0.166</td>
<td>0.154</td>
<td>-5.550</td>
</tr>
<tr>
<td>12</td>
<td>0.299</td>
<td>-7.715</td>
<td>0.602</td>
<td>0.531</td>
<td>0.349</td>
<td>0.174</td>
<td>-5.400</td>
</tr>
<tr>
<td>13</td>
<td>0.344</td>
<td>-8.400</td>
<td>0.676</td>
<td>0.850</td>
<td>0.521</td>
<td>0.182</td>
<td>-3.650</td>
</tr>
<tr>
<td>14 a</td>
<td>0.410</td>
<td>-10.25</td>
<td>0.674</td>
<td>0.895</td>
<td>0.551</td>
<td>0.180</td>
<td>-1.700</td>
</tr>
<tr>
<td>15 a</td>
<td>0.511</td>
<td>-16.81</td>
<td>0.889</td>
<td>1.478</td>
<td>1.498</td>
<td>0.190</td>
<td>-5.800</td>
</tr>
<tr>
<td>15 b</td>
<td>0.631</td>
<td>-19.96</td>
<td>1.112</td>
<td>1.277</td>
<td>1.306</td>
<td>0.200</td>
<td>-9.740</td>
</tr>
<tr>
<td>15 c</td>
<td>0.788</td>
<td>-30.83</td>
<td>1.857</td>
<td>2.556</td>
<td>2.589</td>
<td>0.400</td>
<td>-12.660</td>
</tr>
<tr>
<td>14 b</td>
<td>0.997</td>
<td>-37.93</td>
<td>7.237</td>
<td>9.000</td>
<td>0.519</td>
<td>0.780</td>
<td>4.210</td>
</tr>
</tbody>
</table>
Asymmetry with EW Radiative Corrections

- Full form of asymmetry used to extract $G_E^s + \eta G_M^s$

$$A = -\frac{G_F^e Q^2}{4\pi\alpha\sqrt{2}} \frac{1}{\varepsilon G_E^p + \tau G_M^p} \left\{ \left(1 - 4\sin^2 \theta_W \right) \left(\varepsilon G_E^p G_E^p + \tau G_M^p G_M^p \right) \left(1 + R_V^p \right) \right\} - \left(\varepsilon G_E^p G_E^n + \tau G_M^p G_M^n \right) \left(1 + R_V^n \right) - \left(\varepsilon G_E^p G_E^s + \tau G_M^p G_M^s \right) \left(1 + R_V^{(0)} \right) - \varepsilon' \left(1 - 4\sin^2 \theta_W \right) G_M^p G_A^e \right\}$$

where

$$G_A^e = -G_A^p \left(1 + R_A^{T=1} \right) + \left[\frac{1}{2} \left(3F - D\right) R_A^{T=0} + \Delta s \left(1 + R_A^{(0)} \right) \right] G_A^{dip}$$

and

$$G_A^p = g_A G_A^{dip} = (F + D) G_A^{dip} = \frac{g_A}{\left(1 + \frac{Q^2}{\Lambda_A^2} \right)^2}$$

DHB, 17 June 2005
Standard Parameters

- use Zhu, et al. $R_A^{T=1}$, $R_A^{T=0}$ including anapole
- incident energy 3.028 GeV

<table>
<thead>
<tr>
<th>α</th>
<th>$1/137.03599976$</th>
<th>R_V^p</th>
<th>-0.0447091</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin^2 \theta_W$</td>
<td>0.2312</td>
<td>R_V^n</td>
<td>-0.011789</td>
</tr>
<tr>
<td>G_F</td>
<td>0.00000116639 GeV2</td>
<td>$R_V^{(0)}$</td>
<td>-0.011789</td>
</tr>
<tr>
<td>m_p</td>
<td>0.938272 GeV</td>
<td>$R_A^{T=1}$</td>
<td>-0.259163</td>
</tr>
<tr>
<td>μ_p</td>
<td>2.79285</td>
<td>$R_A^{T=0}$</td>
<td>-0.23826</td>
</tr>
<tr>
<td>μ_n</td>
<td>-1.91304</td>
<td>$R_A^{(0)}$</td>
<td>-0.551753</td>
</tr>
<tr>
<td>Λ^2</td>
<td>0.711 GeV2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ_A^2</td>
<td>1.00 GeV2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_A/g_V</td>
<td>1.2695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3F-D$</td>
<td>0.585</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.npl.uiuc.edu/exp/G0/Forward

DHB, 17 June 2005
Strange Quark Contribution

- Strange quark contribution to asymmetry

\[G_E^s + \eta G_M^s = \frac{4\pi\alpha\sqrt{2}}{G_F Q^2} \frac{\varepsilon G_E^p}{G_E^p(1+R_V^{0})} \left(A_{\text{phys}} - A_{\text{NVS}} \right) + \tau G_M^p \]

\[\eta(Q^2, E_i) = \frac{\tau G_M^p}{\varepsilon G_E^p} \]

\[Q^2 (\text{GeV}^2) \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \]
A_{NV} Sensitivities

- Base calculation uses Kelly electromagnetic form factors and uncertainties
 - PRC 70 (2004) 068202
 - "Rosenbluth" fit for G_E^p, G_M^p
 - Kelly for G_E^n, G_M^n

- Key factors, uncertainties

$$\frac{\Delta G_A^p}{G_A^p} = 2.2\%$$
$$R_A^{T=0} = -0.24 \pm 0.20$$
$$R_A^{T=1} = -0.26 \pm 0.35$$
$$R_A^{(0)} = -0.55 \pm 0.55$$
$$3F - D = 0.585 \pm 0.025$$
Electromagnetic Form Factors

- Use Kelly parameterization for baseline results
 - omits Rosenbluth data for G_E^D, $Q^2 > 1 \text{ GeV}^2$
 - omits some neutron data using associate particle calibration
Electromagnetic Form Factor Uncertainties

- Use slightly modified Kelly uncertainties

DHB, 17 June 2005
G0 Sensitivities for G_E^s

\[
\frac{\partial G_E^s}{\partial p}:
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Det 1</th>
<th>Det 8</th>
<th>Det 14a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{meas} (1/ppm)</td>
<td>8.344×10^{-2}</td>
<td>5.068×10^{-2}</td>
<td>2.113×10^{-2}</td>
</tr>
<tr>
<td>E_i (1/GeV)</td>
<td>-1.911×10^{-3}</td>
<td>-3.021×10^{-3}</td>
<td>-6.755×10^{-3}</td>
</tr>
<tr>
<td>Q^2 (1/GeV2)</td>
<td>1.680</td>
<td>1.575</td>
<td>8.718×10^{-1}</td>
</tr>
<tr>
<td>$G_E^{\gamma p}$</td>
<td>-2.396×10^{-1}</td>
<td>-3.909×10^{-1}</td>
<td>-6.987×10^{-1}</td>
</tr>
<tr>
<td>$G_M^{\gamma p}$</td>
<td>5.488×10^{-2}</td>
<td>6.063×10^{-2}</td>
<td>1.010×10^{-1}</td>
</tr>
<tr>
<td>$G_E^{\gamma n}$</td>
<td>-1.000</td>
<td>-1.000</td>
<td>-1.000</td>
</tr>
<tr>
<td>$G_M^{\gamma n}$</td>
<td>-9.839×10^{-2}</td>
<td>-1.559×10^{-1}</td>
<td>-3.407×10^{-1}</td>
</tr>
<tr>
<td>$G_A^{\gamma p}$</td>
<td>3.992×10^{-3}</td>
<td>6.471×10^{-3}</td>
<td>1.516×10^{-2}</td>
</tr>
<tr>
<td>G_A^s</td>
<td>-1.721×10^{-3}</td>
<td>-2.472×10^{-3}</td>
<td>-4.140×10^{-3}</td>
</tr>
<tr>
<td>R_V^p</td>
<td>6.896×10^{-2}</td>
<td>6.589×10^{-2}</td>
<td>5.861×10^{-2}</td>
</tr>
<tr>
<td>R_V^n</td>
<td>9.440×10^{-2}</td>
<td>1.307×10^{-1}</td>
<td>2.060×10^{-1}</td>
</tr>
<tr>
<td>$R_V^{(0)}$</td>
<td>-3.739×10^{-2}</td>
<td>-2.846×10^{-3}</td>
<td>-5.320×10^{-2}</td>
</tr>
<tr>
<td>R_A^0</td>
<td>-1.123×10^{-3}</td>
<td>-1.613×10^{-3}</td>
<td>-2.702×10^{-3}</td>
</tr>
<tr>
<td>R_A^1</td>
<td>4.875×10^{-3}</td>
<td>7.002×10^{-3}</td>
<td>1.173×10^{-2}</td>
</tr>
<tr>
<td>$R_A^{(0)}$</td>
<td>3.226×10^{-4}</td>
<td>4.633×10^{-4}</td>
<td>7.759×10^{-4}</td>
</tr>
<tr>
<td>$3F-D$</td>
<td>4.575×10^{-4}</td>
<td>6.571×10^{-4}</td>
<td>1.100×10^{-3}</td>
</tr>
</tbody>
</table>
Experimental Asymmetries

- “no vector strange” asymmetry, A_{NVS}, is $A(G_E^s, G_M^s = 0)$
- inside error bars: stat, outside: stat & pt-pt

![Graph showing A (ppm) vs Q^2 (GeV2)](http://www.npl.uiuc.edu/exp/G0/Forward)
Experimental Asymmetries

- “no vector strange” asymmetry, A_{NVS}, is $A(G_E^s, G_M^s = 0)$
- inside error bars: stat, outside: stat & pt-pt
Strange Quark Contribution to Proton

$G_E^s + \eta G_M^s$

$Q^2 (\text{GeV}^2)$

ΔA_{glob}

ΔA_{model}

http://www.npl.uiuc.edu/exp/G0/Forward

DHB, 17 June 2005
Strange Quark Contribution to Proton

\[G_E^s + \eta G_M^s \]

- **G0**
- **HAPPEX**
- **Arrington**
- **Friedrich & Walcher**

\[Q^2 (\text{GeV}^2) \]

http://www.npl.uiuc.edu/exp/G0/Forward

DHB, 17 June 2005
Speculation
Simple Fits to World Hydrogen Data

- Fit

\[G_E^s(Q^2) + \eta(Q^2, E_i)G_M^s(Q^2) = \]
\[\frac{4\pi\alpha\sqrt{2}}{G_F Q^2} \frac{\varepsilon G_E^p}{\varepsilon G_E^p (1 + R_V^{(0)})} \left(A_{phys} - A_{NVS}(Q^2, E_i) \right) \]

with simple forms for \(G_E^s \), \(G_M^s \)

\[G_E^s(Q^2) = \frac{c_2 Q^4}{1 + d_1 Q^2 + d_2 Q^4 + d_3 Q^6} \]

à la Kelly

\[G_M^s(Q^2) = \frac{G_M^s(Q^2 = 0)}{\left(1 + Q^2 / \Lambda_M^s \right)^2} \]

with

\[G_M^s(Q^2 = 0) = 0.81 \]

from \(Q^2 = 0.1 \text{ GeV}^2 \) plot, dipole ff

DHB, 17 June 2005
“Fit” to World Hydrogen Data

- $\chi^2 = 31/20$
“Fit” to World Hydrogen Data

\[c_2 = -0.51 \pm 0.25 \]
\[d_1 = -8.5 \pm 0.9 \]
\[d_2 = 24 \pm 6 \]
\[d_3 = 1 \]
\[\Lambda_M^s = \Lambda^2 / 1.3 \]

Remember the factor of \(-1/3\)
G0 Summary

- First measurement of parity-violating asymmetries over broad Q^2 range
- Excellent performance of accelerator, experimental equipment
- Conservative estimates of uncertainties
 - careful assessment of backgrounds

- Results consistent with previous measurements

- Emerging picture
 - $G_M^S > 0$ at low Q^2
 - $G_E^S < 0$ at medium Q^2 a possibility
 - $G_E^S + \eta G_M^S$ positive at higher Q^2