Measurement of the α Energy Spectrum from 8B and Determination of the Shape of the ν Spectrum

C. Ortiz
A. Garcia
M. Bhattacharya
A. Komives
R. Waltz

University of Notre Dame
SuperK, SNO, ICARUS... will look at distortions of the $8B\nu$ spectrum
\[16004.5(5) \quad 2^+ \]
\[16004.5(5) \quad 2^+ \]

\[\beta^- \]

\[\gamma \quad M1, E2 \]

\[3040(30) \quad 2^+ \quad \Gamma = 1500(20) \]

\[16922(3) \quad 2^+ \quad \Gamma = 174.0(4) \]

\[16626(3) \quad 2^+ \quad \Gamma = 108.1(5) \]

\[17979(1) \quad 2^+ \quad 8_B \]

\[8_{Li} \]

\[4_{He} + 4_{He} \]

\[-91.84(4) \quad 0^+ \quad 0.00(4) \quad 0^+ \]

\[8_{Be} \]
High-energy ν's come from ^8B

- ^8Be
- ν and e^+
- To get the energies of ν's

Can measure the energies of α's
FIG. 2. Measured β momentum spectra. The error bars, where not shown, are smaller than the size of the points. (a) The β^- spectrum of 12B used to calibrate the spectrometer. A fit is performed to obtain the calibration parameter R_0 (see Ref. 15). (b) The β^+ spectrum of 8B. The solid line is the predicted spectrum which gives the best agreement (see Table I). The dashed line shows a normal allowed spectrum for a hypothetical sharp final state at $E_x \approx 3$ MeV in 8Be.

when both recoil order terms and radiative corrections are
Fig. 1. Combined ^8B plus $\nu_{e\bar{e}}$ energy spectrum. The total flux of $\nu_{e\bar{e}}$ neutrinos was varied to obtain the best-fit for each scenario. The figure shows the Ratio of the measured [1] to the calculated number of events with electron recoil energy E. The measured points were reported by the SuperKamiokande collaboration at Neutrino 98[1]. The calculated curves are global fits to all of the data, the chlorine [20], GALLEX [21], SAGE [22], and SuperKamiokande [1] total event rates, the SuperKamiokande [1] energy spectrum, and the SuperKamiokande [1] Day-Night asymmetry. The calculations follow the precepts of BKS98 [23] for the best-fit global solutions for a standard 'no-oscillation' energy spectrum, as well as MSW and vacuum neutrino oscillation solutions. The horizontal line at Ratio = 0.37 represents the ratio of the total event rate measured by SuperKamiokande to the predicted event rate[9] with no oscillations and only ^8B neutrinos.

For vacuum oscillations, the value of α corresponding to the global χ^2_{min} does not depend strongly on Δm^2 and $\sin^2 2\theta$ within the acceptable region. The improvement in the C.L. for acceptance increases from 6% to 15% when an arbitrary $\nu_{e\bar{e}}$ flux is considered.

The best-fit global MSW solution with an arbitrary $\nu_{e\bar{e}}$ flux has neutrino parameters given by $\Delta m^2 = 5.4 \times 10^{-6}\text{eV}^2$ and $\sin^2 2\theta = 5.0 \times 10^{-3}$, which
Figure 1: Normalized energy spectra of $^8 \text{B}$, hep and eB neutrinos.
Figure 3: Observed electron energy spectrum normalized to SSM expectations (dots). The solid line is the prediction for $\Phi_{\nu_e} = 1.1 \times 10^4 \text{ cm}^{-2}\text{s}^{-1}$.
FIG. 2. Compilation of 8Be(2α) decay data. The bin widths are different for different experiments. The data WA1 and WA2 are shifted on the vertical axis.

FIG. 3. Values of the normalized chi square in a fit to the experimental positron spectrum, using the input alpha decay data of Fig. 2, with an allowance for a possible bias, β, in the detected alpha particle energy. The curves are remarkably similar, modulo a constant bias.

FIG. 4. Experimental data on the positron spectrum, together with the best fit and the $\pm 3\sigma$ fit, corresponding to WA1 alpha decay data within the bias range $\beta = 0.025 \pm 0.050$ MeV.

FIG. 5. The best estimate (standard) 8B neutrino spectrum λ, together with the spectra λ^\pm allowed by the maximum ($\pm 3\sigma$) theoretical and experimental uncertainties.
Advantages of our Setup:

1) Detectors completely blind to β's
 a) allowed us to count α-α coincidences without β's.
 b) cleared low-energy β backgrounds.
 c) avoided β summing.

2) Continuous α-energy calibration.

3) Continuous foil-thickness monitoring.
Energy calibrations are taken within each cycle in both detectors with mixed (148Gd+241Am) sources.
We measured detectors dead layers and calculated energy loss in the dead layers plus foils

![Graph showing energy loss and dead layer/foil distinction.]

We corrected the 8B spectrum event-by-event for energy loss.
$E_{\alpha 1} + E_{\alpha 2} = \text{constant}$
Efficiency for 8B

Energy 8Be (MeV)
The problem: \[-\frac{\hbar^2}{2m} \frac{d^2\phi}{dr^2} + V(r) \phi = E \phi \] (1)

Instead, we solve: \[-\frac{\hbar^2}{2m} \frac{d^2X_\lambda}{dr^2} + V X_\lambda = E_\lambda X_\lambda \] (2)

\[
\left(\frac{dX_\lambda}{dr} + b X_\lambda \right)_{r=a} = 0
\]

The solutions to the real problem can be expanded in terms of the \(X_\lambda \)'s:

\[
\phi = \sum_\lambda A_\lambda X_\lambda
\]

\[
A_\lambda = \int_0^a X_\lambda \phi \, dr
\]

From (1) and (2):

\[
\frac{\hbar^2}{2m} \left(\phi \frac{dX_\lambda}{dr} - X_\lambda \frac{d\phi}{dr} \right) = (E - E_\lambda) A_\lambda
\]

\[
\phi(r) = G(r,a) \left\{ \phi(a) + b \phi(a) \right\}
\]

\[
\uparrow
\]

\[
\frac{\hbar^2}{2m} \sum_\lambda X_\lambda(r) X_\lambda(a)
\]

\[
\frac{E_\lambda - E}{E_\lambda - E}
\]

define 'reduced width': \(x_\lambda^2 = \frac{\hbar^2}{2m} \left[X_\lambda(a) \right]^2 \)

\[R^* : R = \sum_\lambda \frac{x_\lambda^2}{E_\lambda - E} \]
To calculate cross section:

\[\phi_{\text{outside}} = I - U \theta \]

\[S = \frac{\pi}{k^2} \left| 1 - U \right|^2 \]

\[I = \frac{e^{-ikr}}{\sqrt{4\pi r}} \]
\[\theta = \frac{e^{+ikr}}{4\pi r} \]

To get \(U \) we take the logarithmic derivative and equate it to the value inside:

\[U = e^{-2ika} \frac{1 - bR + ikR}{1 - bR - ikR} \]

\[S = \frac{\pi}{k^2} \left| 2 \sin ka \ e^{ika} - \frac{2k \gamma^2}{(E_0 - E) - (b + ik) \gamma^2} \right|^2 \]
8B energy spectrum
R-matrix fit to the data

\[N(E) = \left(\frac{N_t}{6166\pi} \right) f_p P_2 \left(\frac{\left| \sum_{j=1}^{n} \frac{M_{0j} \gamma_j}{E_j - E} \right|^2 + \left| \sum_{j=1}^{n} \frac{M_{1j} \gamma_j}{E_j - E} \right|^2}{\left(1 - (S_2 - B_2 + iP_2) \sum_{j=1}^{n} \frac{\gamma_j^2}{E_j - E} \right)^2} \right) \]

(1)

The 16 MeV doublet was assumed to be a near equal mixture of \(T = 0 \), and \(T = 1 \). Let \(\psi_a \) and \(\psi_b \) be two wavefunctions with isospin 0 and 1, respectively:

\[\psi_2 = \alpha\psi_a + \beta\psi_b, \quad \psi_3 = \beta\psi_a - \alpha\psi_b \]

The values of \(\alpha \) and \(\beta \) were extracted from the widths:

\[\alpha^2 = \frac{\Gamma_2}{\Gamma_0}, \quad \beta^2 = \frac{\Gamma_3}{\Gamma_0}, \quad \Gamma_0 = \Gamma_2 + \Gamma_3. \]

(2)

The relation between the reduced width \(\gamma_i \) and the width \(\Gamma_i \) for a given level were approximated by the following formulas

\[\gamma_1^2 = \frac{\Gamma_1}{2P_2(E_1) - \Gamma_1 \frac{d\ln(E)}{dk}}, \quad \gamma_2^2 = \frac{\alpha^2 T_0}{2P_2(E_2)}, \quad \gamma_3^2 = \frac{\beta^2 T_0}{2P_2(E_3)}. \]

(3)

The matrix elements for the 16 MeV doublet can then be expressed in terms of the matrix elements of the functions \(\psi_a \) and \(\psi_b \).

\[M_{2\bar{2}} = \beta M_{0\bar{0}} \]

\[M_{2\bar{3}} = -\alpha M_{0\bar{0}} \]

\[M_{2GT} = \alpha M_{GJT} + \beta M_{GJT} \]

\[M_{3GT} = \beta M_{GJT} - \alpha M_{GJT} \]

\[M_{GJT} = \sqrt{2} \]

\[M_{GJT} = 0 \]

\[M_{GJT} = 0 \]

\[M_{GJT} = 2.64 \]

The value of \(M_{GJT} \) was left as a free variable in the \(\chi^2 \) fit. It was also assumed that the contribution from \(M_{GJT} \) would not be significant and was held fixed at zero.
8Be endpoint distribution
present results vs. previous results

![Graph showing comparison between present and previous results for 8Be endpoint distribution.](image)
Neutrino energy spectrum