Partial Wave Analysis
results from JETSET

Richard Jones
University of Connecticut

representing the Jetset collaboration
with members from Bari, CERN, Erlangen, Freiburg, Genova, Illinois, Jülich, Oslo, Uppsala

• the Jetset experiment
• PWA formalism and MC tests
• results from analysis of full data set
The Jetset Experiment

Measures in-flight pbar annihilation: $\bar{p}p \rightarrow \phi \phi$

OZI-suppressed, may form glueball resonances in s-channel

Morningstar et.al., LAT991004
Total cross section $\bar{p}p \rightarrow \phi \phi$

Complete data set from Jetset

<table>
<thead>
<tr>
<th>point</th>
<th>$N(\phi\phi)$</th>
<th>$N(\text{b.g.})$</th>
<th>point</th>
<th>$N(\phi\phi)$</th>
<th>$N(\text{b.g.})$</th>
<th>point</th>
<th>$N(\phi\phi)$</th>
<th>$N(\text{b.g.})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>326</td>
<td>95</td>
<td>5</td>
<td>1005</td>
<td>589</td>
<td>9</td>
<td>1318</td>
<td>877</td>
</tr>
<tr>
<td>2</td>
<td>414</td>
<td>225</td>
<td>6</td>
<td>1262</td>
<td>585</td>
<td>10</td>
<td>1056</td>
<td>943</td>
</tr>
<tr>
<td>3</td>
<td>626</td>
<td>270</td>
<td>7</td>
<td>1782</td>
<td>886</td>
<td>11</td>
<td>936</td>
<td>1592</td>
</tr>
<tr>
<td>4</td>
<td>840</td>
<td>369</td>
<td>8</td>
<td>1375</td>
<td>868</td>
<td>12</td>
<td>707</td>
<td>1666</td>
</tr>
</tbody>
</table>

R.T. Jones
J values of the waves included in the partial wave analysis. All waves up to J=4, L=4 in the final state were allowed.

<table>
<thead>
<tr>
<th>wave</th>
<th>J^P_C</th>
<th>L initial</th>
<th>S initial</th>
<th>L final</th>
<th>S final</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0−+</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0++</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0++</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1++</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2++</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2++</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2++</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2++</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>2−+</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2−+</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>2++</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2++</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2++</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2++</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>3++</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>3++</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>4−+</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>4++</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>4++</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>4++</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>4++</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>4++</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>4++</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Getting started:

- Fit with all waves free
 - gives full freedom to the fit -> definition of “good fit”
 - errors on amplitudes are large, meaningless

- Reduce the set of allowed waves in search of a minimal set that gives a good description of the entire data set
 - gives priority to an economical description
 - adequacy judged in comparison with full fit
 - require same set of waves for all mass bins

We found 3 dominant waves
 all 2++

Method:

1. Group the data into mass bins with sufficient statistics

2. For each bin, try all waves one-by-one, keep best, repeat
 ➔ Sets agreed on 3 top waves.

3. Go back to beginning and put in waves two-by-two trying all pairs of waves together, then add one-by-one
 ➔ Sets chose same set of 3 waves as dominant.
Ambiguities

2 kinds:

1. **Essential ambiguities**
 - correspond to *invariances* in angular distributions from PWA expansion
 - continuous invariances: global phases (2)
 - discrete invariances: undetermined signs (4)
 - no others believed to exist for 2(V→2P)
 - irreducible even in limit of good acceptance and high statistics

2. **Statistical ambiguities**
 - correspond to different angular distributions which cannot be discriminated given the available data
 - discrete (different local maxima in likelihood)
 - discovered by systematic numerical search
 - reducible by good acceptance and high statistics
 - relatively few in this data set
Monte Carlo test

Ingredients:
- 1 resonant wave, two non-resonant
- experimental acceptance through simulation
- same reconstruction, analysis as for real data
Results of Monte Carlo test

R.T. Jones
Monte Carlo test #2

- include incoherent background
- uniform angular distribution for background
- not orthogonal to waves -- check for leakage

R.T. Jones
Results of Monte Carlo test #2

wave 2S

wave 2(D2)

wave 2(D0)

2S - 2(D2)

2(D0) - 2(D2)

R.T. Jones
PWA Results

- 3-wave fit **identical** to Monte Carlo test #2
- simultaneous fit in mass and angular distributions
- $\phi\phi$ cross section now corrected for acceptance
 based on **measured** angular distribution

R.T. Jones
3-wave fit

wave 2S

wave 2(D2)

wave 2(D0)

2S – 2(D2)

2(D0) – 2(D2)

R.T. Jones
Possible Interpretation

- narrow peak seen in raw cross section
- PWA reveals 3 dominant waves in 2^{++}
- rapid phase motion seen in two waves as expected for a Breit-Wigner resonance
Quality of the fit

- To check goodness of fit, use **likelihood ratio test**

 Define \(\chi^2 = -2 \ln \left(\frac{L}{L_0} \right) \)

 where \(L_0 \) is the likelihood maximum over the full parameter space and \(L \) is the likelihood maximum over some restricted part.

- For large \(N \), behaves like chi-square with \(n-n_0 \) d.o.f.

\[\chi^2 = -2 \ln \left(\frac{L}{L_0} \right) \]
6-wave fit

wave 2S

wave 2(D2)

wave 2(D0)

2S − 2(D0)

2(D2) − 2(D0)

R.T. Jones
6-wave fit

R.T. Jones
Some strength in 2^+ has moved to 3^+

No obvious narrow structure is visible in 2^+

Phase motion seen does not correspond to a simple Breit-Wigner resonance

Statistical errors do not justify a serious attempt to perform a multiple-pole fit
Conclusions

- PWA has been performed of the reaction
 \[p \bar{p} \rightarrow \phi \phi \]

- 3 dominant waves were found, all \(2^{++} \).

- Rapid phase motion seen in two waves consistent with a narrow \(2^{++} \) resonance.

BUT

- The fit shows significant improvement if more waves are added, up to 6.

- Statistical errors do not permit a clear interpretation of 6-wave solution, but it does not favour a single narrow resonance.

AND

- Possible interference between the \(\phi \phi \) and an underlying \(f_0, f_0 \) background should be taken into account.
5-wave fit

wave 2S

wave 2(D2)

wave 2(D0)

2S − 2(D2)

2(D0) − 2(D2)

R.T. Jones
5-wave fit

R.T. Jones