Aspects of GPDs

- Unified description of nucleon structure probed in
 - Inclusive DIS
 - Elastic form factors
 - Hard exclusive processes

- Access to operators not available in standard electroweak interactions
 - EM Tensor, J_q

- Quark/gluon imaging of nucleon
 - 2D “tomography"
 - 3D imaging

Q: What can measurements of hard exclusive processes contribute to our knowledge of GPDs?
GPDs: Distinguish three regions

→ Interest for nucleon structure
→ Experimental access
→ Theoretical understanding

\[
x + \xi \quad x - \xi
\]

I) \(\xi = 0 \) Transverse quark imaging (“tomography”)

II) \(x = \xi \) “Stopping” of fast quark

III) \(x \neq \xi \) 3D imaging, sum rules
1) GPDs at $\xi = 0$: Transverse parton imaging

- **Input**: PDFs, Formfactors
- **Correlation $x \leftrightarrow t$**
 - $x \to 1$: pQCD
 - Small x: Regge, DGLAP evolution
 - Intermediate x: Lattice
- **Interesting**: Transverse spin, etc.

Theory well understood; No direct access at large x ($\xi, t_{\text{min}} \neq 0$)

Small $x \to$ tomorrow
II) GPDs at $x = \xi$: Stopping of fast quark

- Probed by $\text{Im}(\text{DVCS})$ at leading twist

- Overlap of very different configurations in nucleon wave function
 - Role of vacuum structure?
 - Hard–soft separation, QCD evolution?

Directly accessible in experiment
Challenge for theory:
Can we relate it to PDF/formfactor?
III) GPDs at \(x \neq \xi \): General case

- Needed for 3D imaging, Ji's angular momentum sum rule
 \[
 \int dx \ x \ [H_q(x, \xi) + E_q(x, \xi)]_{t=0} = 2J_q
 \]

- Probed by \(\text{Re}(\text{DVCS}) \) at leading twist

- Two–component structure: "Meson exchange" contributions for \(-\xi < x < \xi\)

Challenging for both experiment and theory!
From electroproduction data to GPDs

GPD parametrizations

Sensitivity?

Leading-twist observables

Higher twist
Target mass
L/T

Data

2D/3D Imaging
Sum rules J_q

$\text{Im}(\text{Amp}) \sim H(x = \xi, t)$

$\text{Re}(\text{Amp}) \sim \int dx \frac{H(x, \xi, t)}{x \pm \xi}$

$(e, e' \gamma)$ cross section, target/beam spin asymmetry

$(e, e' \text{ meson})$ cross section and response fns (L/T)
GPD Parametrizations
GPD parametrizations: Requirements

- PDF, formfactor as limits
- Polynomiality: $\int dx \, x^n \, H(x, \xi) = \text{Pol}_{n+1}(\xi)$
- Non-perturbative dynamics at $x \to \xi$
- "Meson exchange" contributions at $-\xi < x < \xi$
- Correlation $x \leftrightarrow t$ dependence
GPD parametrizations: Overview

<table>
<thead>
<tr>
<th></th>
<th>Basic idea</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double distribution</td>
<td>Spectral representation symmetric in P, Δ; Polynomiality</td>
<td>Widely used at large x
Relation to nucleon structure?</td>
</tr>
<tr>
<td>“Dual” parametrization</td>
<td>t–channel partial wave expansion;
“Dual” amplitudes</td>
<td>LO evolution included
Natural small–x expansion
Useful at large x?</td>
</tr>
<tr>
<td>Conformal parametrization</td>
<td>Diagonalization of QCD evolution;
Complex angular momentum representation</td>
<td>LO/NLO evolution;
Connection with Regge phenomenology at small x</td>
</tr>
</tbody>
</table>

1) Radyushkin 96; Polyakov, CW 99; Belitsky, Müller 00; Goeke, Polyakov, Vanderhaeghen, 2001
2) Polyakov, Shuvaev 02; Polyakov, Guzey 06
3) Müller, Schäfer 05
GPD parametrizations: Questions

- Do we understand the $x \rightarrow \xi$ behavior?

 How do measurements of $H(x = \xi) \sim \text{Im(DVCS)}$ constrain GPDs elsewhere?

- Sensitivity of Re(DVCS) to parameters?

- What can lattice calculations of moments contribute?