Low Energy Theory of the Neutron Star Crust and its Observable Implications.

Sanjay Reddy
Los Alamos National Laboratory

Collaborators:
Aguilera, Cirigliano, Chamel, Cumming, Page, Pethick, Pons & Sharma
Neutron Star Crust:

- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
- Neutron Star Crust:
New Phenomena in Neutron Stars
- a window into the thermal and mechanical properties of the crust.

- Crustal heating and subsequent thermal relaxation in accreting neutron stars.
- Possible excitation of shear modes in the solid crusts of magnetars during giant flares.
Transient Accretion

• Nuclear reactions heat the crust during accretion.

• Crust relaxes during quiescence.
Transient Accretion

- Nuclear reactions heat the crust during accretion.
- Crust relaxes during quiescence.
Transient Accretion

- Nuclear reactions heat the crust during accretion.
- Crust relaxes during quiescence.
More than one source!

Cackett et al. 2006

MXB 1659-29

6.6 yr

$\tau_{\text{Cool}} = 465 \pm 25$ days

Cackett et al. 2008

KS 1731-260

4.4 yr

$\tau_{\text{Cool}} = 305 \pm 50$ days
Connecting to Crust Microphysics

\[\tau_{\text{Cool}} \simeq \frac{C_V}{\kappa} \left(\Delta R \right)^2 \]
Connecting to Crust Microphysics

Crustal Specific Heat

$$\tau_{\text{Cool}} \sim \frac{C_V}{\kappa} (\Delta R)^2$$
Connecting to Crust Microphysics

\[\tau_{\text{Cool}} \approx \frac{C_V}{\kappa} (\Delta R)^2 \]

Crustal Specific Heat

Thermal Conductivity
Connecting to Crust Microphysics

\[\tau_{\text{Cool}} \approx \frac{C_V}{\kappa} (\Delta R)^2 \]

Crustal Specific Heat

Crust Thickness

Thermal Conductivity
Explosions on Magnetars: Giant Flares

Anomalous X-Ray Pulsars (10)
Soft Gamma Repeaters (8)

Inferred to have surface fields of the order of 10^{15} Gauss.

SGRs exhibit powerful outburst $\sim 10^{46}$ ergs/s

SGR 0525-66 : (1979)
SGR 1627-41 (1998)

Hurley et al. (2005)
QPOs are likely to be shear modes in the solid crust

\[\omega_{n=0} \approx \frac{2}{c_t R} \]
\[\omega_{n=1} \approx \frac{\pi}{R} \frac{c_t}{R} \frac{\Delta R}{R} \]
\[\omega_{n=0, l=2} \approx \frac{2}{c_t} \frac{R}{R} \]

Similar frequencies observed in 2 sources.

SGR 1806
2004 Giant Flare
QPOs are likely to be shear modes in the solid crust

\[\omega_{n=0, l=2} \approx \frac{\pi c_t}{R} \frac{\Delta R}{R} \]

\[\omega_{n=1} \sim \frac{\pi c_t}{R} \frac{\Delta R}{R} \]

Similar frequencies observed in 2 sources.

SGR 1806
2004 Giant Flare

Shear mode velocity
Microscopic Structure of the Crust

Baym Pethick & Sutherland (1971) Negele & Vautherin (1973)
Microscopic Structure of the Crust

Baym Pethick & Sutherland (1971) Negele & Vautherin (1973)
Separation of Scales

- Protons cluster (pairing + shell gaps)
- Proton clusters form a Coulomb lattice.
- Neutrons pair to form a superfluid.

\[\omega_{\text{plasma}} = \sqrt{\frac{4\pi\alpha Z^2 n_I}{A m_n}} \]

\[\omega_{\text{Debye}} \sim \frac{c}{a} \approx 0.45 \, \omega_{\text{plasma}} \]

\[\Delta \propto E_{F_n} \exp\left(\frac{-1}{N(0) V_{nn}}\right) \]

Longitudinal and Transverse Lattice Phonons

Superfluid Phonons

Nuclei (protons)

Neutrons
Superfluid Critical Temperature

\[T_c \simeq 0.57 \Delta \ (?) \]

Pairing gap is difficult to calculate in strong coupling. No small expansion parameter \(k_F a > 1 \).

Cold atom experiments at \(k_F a = \infty \) validate QMC.

Polarization measurements in imbalanced systems are exponentially sensitive to the gap.

At \(k_F a = \infty \): \(\delta = \frac{\Delta}{E_F} = 0.45 \pm 0.05 \)
Superfluid Critical Temperature

\[T_c \simeq 0.57 \Delta \quad (?) \]

Pairing gap is difficult to calculate in strong coupling. No small expansion parameter \(k_F a > 1 \).

Cold atom experiments at \(k_F a = \infty \) validate QMC.

Polarization measurements in imbalanced systems are exponentially sensitive to the gap.

At \(k_F a = \infty \): \[\delta = \frac{\Delta}{E_F} = 0.45 \pm 0.05 \]

Gezerlis & Carlson (2009)

Carlson & Reddy (2010)
Relevant Temperature Scales in the Crust

- Electrons T_F
- Ion $T_{\text{Melt}} (\Gamma=200)$
- Ion T_{Plasma}
- Ion $T_{\text{DeBroglie}}$
- Umklapp

Graph showing temperature scales versus density (ρ) in the crust.
Relevant Temperature Scales in the Crust

Temperature scales include:

- Electrons T_F
- Ion $T_{\text{Melt}} (\Gamma=200)$
- Ion T_{Plasma}
- Ion $T_{\text{DeBroglie}}$
- Ion T_{Umklapp}

The graph shows the variation of temperature T with density ρ in the crust, distinguishing between outer and inner crust regions.

Accreting and Magnetized Neutron Stars

Tuesday, July 6, 2010
Low Energy Excitations

\[\omega_{lPh}(q) = c_l \, q \quad \omega_{sPh}(q) = \nu_s \, q \]
\[\omega_{tPh}(q) = c_t \, q \quad \omega_{\text{electron}} = q \]

How are these low energy modes coupled?
Low Energy Effective Field Theory

Proton (clusters) move collectively on lattice sites. Displacement is a good coordinate.

Neutron superfluid: Goldstone excitation is the phase of the condensate.
Proton (clusters) move collectively on lattice sites. Displacement is a good coordinate.

Neutron superfluid: Goldstone excitation is the phase of the condensate.
Proton (clusters) move collectively on lattice sites. Displacement is a good coordinate.

Neutron superfluid: Goldstone excitation is the phase of the condensate.

\[
\langle \psi^\uparrow(r)\psi^\downarrow(r) \rangle = |\Delta| \exp(-2i\theta)
\]

"coarse-grain"

Collective coordinates:
Vector Field: \(\xi_i(r, t)\)
Scalar Field: \(\phi(r, t)\)
Inner Crust EFT

Protons:

\[
\mathcal{L}_p = \frac{1}{2} n_p m \left(\partial_t \xi_i \partial_t \xi_i - \frac{1}{2} K \partial_i \xi_i \partial_i \xi_i - \frac{1}{4} \mu_s \xi_{ij} \xi_{ij} + \cdots \right)
\]

\[\xi_{ij} = \partial_i \xi_j + \partial_j \xi_i - \frac{2}{3} \delta_{ij} \partial_k \xi_k\]

Compressibility

\[K \propto \frac{\partial^2 E}{\partial n_p \partial n_p}\]

Shear Modulus

\[\mu_s \propto \frac{Z^2 e^2}{a^4}\]

Neutrons:

\[
\langle \psi_\uparrow(r) \psi_\downarrow(r) \rangle = |\Delta| \exp(-2i \theta)
\]

\[\theta = \mu_n t\]

Ground-state

\[\mathcal{L}_n = P(\mu_n)\]

Son & Wingate (2006)
Inner Crust EFT

Protons:

\[\mathcal{L}_p = \frac{1}{2} n_p m \, \partial_t \xi_i \, \partial_t \xi_i - \frac{1}{2} K \, \partial_i \xi_i \partial_i \xi_i - \frac{1}{4} \mu_s \, \xi_{ij} \, \xi_{ij} + \cdots \]

\[\xi_{ij} = \partial_i \xi_j + \partial_j \xi_i - \frac{2}{3} \delta_{ij} \, \partial_k \xi_k \]

Compressibility

\[K \propto \frac{\partial^2 E}{\partial n_p \partial n_p} \]

Shear Modulus

\[\mu_s \propto \frac{Z^2 \, e^2}{a^4} \]

Neutrons:

\[\langle \psi_\uparrow(r) \psi_\downarrow(r) \rangle = |\Delta| \exp(-2i \, \theta) \]

\[\theta = \mu_n \, t - \phi \]

Ground-state

Fluctuations (Superfluid Phonons)

\[\mathcal{L}_n = P(\mu_n) \]

Son & Wingate (2006)
Coupling Neutrons and Protons.
(or the superfluid and the lattice)

$$\mathcal{L}_n = P(\mu_n) + \frac{\partial P}{\partial \mu_n} \, \delta \mu_n + \frac{1}{2} \frac{\partial^2 P}{\partial \mu_n \partial \mu_n} \, \delta \mu_n^2 + \cdots$$

Gibbs-Duhem Relation:

\[
\delta \mu_n = E_{nn} \, \delta n_n + E_{np} \delta n_p
\]
\[
\delta \mu_n = -\partial_t \phi - E_{np} n_p \partial_i \xi_i
\]

Velocities and current-current coupling:

\[
\vec{v}_n = \frac{\partial_i \phi}{m}
\]
\[
\vec{v}_p = m \, \partial_t \xi_i
\]

\[
\delta \mu_n = -\frac{(\partial_i \phi)^2}{2m} + \frac{1}{2} \gamma \, m \, (\vec{v}_n - \vec{v}_p)^2
\]
Coupling Neutrons and Protons.
(or the superfluid and the lattice)

\[\mathcal{L}_n = P(\mu_n) + n_n \delta \mu_n + \frac{1}{2} \chi n \delta \mu_n^2 + \cdots \]

Gibbs-Duhem Relation:

\[\delta \mu_n = E_{nn} \delta n_n + E_{np} \delta n_p \]

\[\delta \mu_n = -\partial_t \phi - E_{np} n_p \partial_i \xi_i \]

\[\uparrow \]

density-density interaction

Velocities and current-current coupling:

\[\ddot{v}_n = \frac{\partial_i \phi}{m} \]

\[\ddot{v}_p = m \partial_t \xi_i \]

\[\delta \mu_n = -\frac{(\partial_i \phi)^2}{2m} + \frac{1}{2} \gamma m (\ddot{v}_n - \ddot{v}_p)^2 \]

\[\uparrow \]

current-current interaction
The Coupled System

\[\mathcal{L}_{n+p} = \frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} v_s^2 (\partial_i \phi)^2 + \frac{1}{2} (\partial_t \xi_i)^2 - \frac{1}{2} (c_l^2 - g^2) (\partial_i \xi_i)^2 \]

Velocities:

\[v_s^2 = \frac{n_f}{m \chi \eta} \quad c_l^2 = \frac{K + 4 \mu_s / 3}{m (n_p + n_b)} \]

Entrainment: protons drag neutrons.

\[\begin{cases} \text{Bound neutrons:} & n_b = \gamma n_n \\ \text{Free neutrons:} & n_f = n_n (1 - \gamma) \end{cases} \]
The Coupled System

\(\mathcal{L}_{n+p} = \frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} v_s^2 (\partial_i \phi)^2 + \frac{1}{2} (\partial_t \xi_i)^2 - \frac{1}{2} (c_l^2 - g^2) (\partial_i \xi_i)^2 \)

\[+ g \, \partial_t \phi \, \partial_i \xi_i + \tilde{\gamma} \, \partial_i \phi \, \partial_t \xi_i \]

Velocities:
\(v_s^2 = \frac{n_f}{m \chi_n} \quad c_l^2 = \frac{K + 4 \mu_s / 3}{m (n_p + n_b)} \)

Entrainment: protons drag neutrons.

\{ Bound neutrons: \(n_b = \gamma \, n_n \)

Free neutrons: \(n_f = n_n \, (1 - \gamma) \)

Longitudinal lattice phonons and superfluid phonons are coupled:

\[g = n_p \, E_{np} \sqrt{\frac{\chi_n}{m(n_p + n_b)}} \quad \tilde{\gamma} = \frac{-n_b \, v_s}{\sqrt{(n_p + n_b)n_f}} \]
The Coupled System

\[\mathcal{L}_{n+p} = \frac{1}{2}(\partial_t \phi)^2 - \frac{1}{2}v_s^2 (\partial_i \phi)^2 + \frac{1}{2}(\partial_t \xi_i)^2 - \frac{1}{2}(c_l^2 - g^2) (\partial_i \xi_i)^2 \]

\[+ g \partial_t \phi \partial_i \xi_i + \tilde{\gamma} \partial_i \phi \partial_t \xi_i \]

Velocities:

\[v_s^2 = \frac{n_f}{m \chi_n} \quad c_l^2 = \frac{K + 4\mu_s/3}{m(n_p + n_b)} \]

Entrainment: protons drag neutrons.

\[\begin{cases} \text{Bound neutrons:} & n_b = \gamma n_n \\ \text{Free neutrons:} & n_f = n_n (1 - \gamma) \end{cases} \]

Longitudinal lattice phonons and superfluid phonons are coupled:

\[g = n_p E_{np} \sqrt{\frac{\chi_n}{m(n_p + n_b)}} \quad \tilde{\gamma} = \frac{-n_b v_s}{\sqrt{(n_p + n_b)n_f}} \]

Transverse lattice phonons:

\[\mathcal{L}_t = \frac{1}{2}(\partial_t \xi_i)^2 - \frac{1}{2}c_t^2 (\partial_i \xi_j + \partial_j \xi_i)^2 \quad \Rightarrow \quad c_t^2 = \frac{\mu_s}{m(n_p + n_b)} \]
List of Low Energy Constants

<table>
<thead>
<tr>
<th>C_l</th>
<th>C_t</th>
<th>ν_s</th>
<th>g</th>
<th>$\tilde{\gamma}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>μ_s</td>
<td>E_{nn}</td>
<td>E_{np}</td>
<td>n_b</td>
</tr>
</tbody>
</table>

Thermodynamic Derivatives:

- $E_{nn} = \frac{\partial^2 E}{\partial n_n \partial n_n}$
- $E_{pp} = \frac{\partial^2 E}{\partial n_p \partial n_p}$
- $E_{np} = \frac{\partial^2 E}{\partial n_n \partial n_p}$

Coupling between superfluid and lattice:

- $g \approx 10^{-3} - 10^{-2}$
- $\tilde{\gamma} \approx 10^{-3} - 10^{-2}$

Tuesday, July 6, 2010
Two Applications

- Superfluid heat conduction.
- Effects of mixing and entrainment on the sound speeds.
Mixing and Dissipation

Mixing of sound modes

Longitudinal Lattice Phonon
Superfluid Phonon
Transverse Lattice Phonons

ρ (g/cm³)

Speed (in units of c=3x10⁻¹⁰ cm/s)

10¹¹ 10¹² 10¹³ 10¹⁴

0.01 0.1
Mixing and Dissipation

Mixing of sound modes

Dissipation of IPH leads to dissipation of sPH

Tuesday, July 6, 2010
Mixing and Dissipation

Mixing of sound modes

Dissipation of lPh leads to dissipation of sPh
Mixing and Dissipation

Mixing of sound modes

Dissipation of lPh leads to dissipation of sPh

\[
\lambda_{\text{abs}}(\omega) = \frac{\nu_s^2}{g_{\text{mix}}^2} \frac{1 + (1 - \alpha^2)^2 (\omega \tau_{\text{lPh}})^2}{\alpha (\omega \tau_{\text{lPh}})^2} \lambda_{\text{lPh}}(\omega)
\]

sPh mean free path

lPh mean free path
Mixing and Dissipation

Mixing of sound modes

Dissipation of lPh leads to dissipation of sPh

\[
\lambda_{\text{abs}}(\omega) = \frac{v_s^2}{g_{\text{mix}}^2} \frac{1 + (1 - \alpha^2)^2 \left(\frac{\omega}{\tau_{\text{lPh}}} \right)^2}{\alpha \left(\frac{\omega}{\tau_{\text{lPh}}} \right)^2} \quad \lambda_{\text{lPh}}(\omega)
\]

\[
\tilde{g}_{\text{mix}} = g + \tilde{\gamma} \quad \alpha = \frac{c_l}{v_s}
\]

\[
\lambda_{\text{lPh}} = c_l \tau_{\text{lPh}}
\]

sPh mean free path

lPh mean free path

sPh mean free path

lPh mean free path
Mixing and Dissipation

Mixing of sound modes

Dissipation of lPh leads to dissipation of sPh

\[\lambda_{\text{abs}}(\omega) = \frac{v_s^2}{g_{\text{mix}}^2} \frac{1 + (1 - \alpha^2)^2 (\omega \tau_{\text{lPh}})^2}{\alpha (\omega \tau_{\text{lPh}})^2} \]

\[\alpha = \frac{c_l}{v_s} \]

\[\lambda_{\text{lPh}}(\omega) \]

\[\tilde{g}_{\text{mix}} = g + \tilde{\gamma} \]

Away from resonance

\[\lambda_{\text{sPh}} \simeq 10^5 \lambda_{\text{lPh}} \]
Thermal Conductivity

\[\kappa = \frac{1}{3} C_v \times v \times \lambda \]

Typically electrons dominate heat conduction.

Processes:
- Electron-phonon
- Electron-impurity

Flowers & Itoh (1976)
Uripin & Yakovlev (1980)
Thermal Conductivity

\[\kappa = \frac{1}{3} C_v \times u \times \lambda \]

For \(T > 10^8 \) K, superfluid phonons play a role.

Typically electrons dominate heat conduction.

Processes:
- Electron-phonon
- Electron-impurity

Flowers & Itoh (1976)
Uripin & Yakovlev (1980)
Conductivity in Magnetized Neutron Stars

Magnetic field suppresses transverse conduction

\[\kappa_\perp = \frac{\kappa_\parallel}{1 + (\omega_g \tau_e)^2} \]

\[\kappa_\parallel = \kappa_{el}(B = 0) \]

\[\omega_g = \frac{eB}{\mu_e} \quad \text{=Gyrofrequency} \]

\[\tau_e = \text{Collision time} \]

Canuto and Ventura (1977)
Urpin & Yakovlev (1980)
Conductivity in Magnetized Neutron Stars

Magnetic field suppresses transverse conduction

Aguilera et al. (2009)
Specific Heat

Lowest energy modes dominate the specific heat.

Shear Mode Velocity:

\[C_V \approx \frac{4\pi^2}{15} \frac{T^3}{c_t^3} \quad (T < T_{\text{Debye}}) \]

\[c_t^2 = \frac{\mu_s}{m(n_p + n_b)} \]

\[\mu_s \propto \frac{Z^2 e^2}{a_i^4} \]

\[n_b = \gamma n_n \]

Entrainment effects

Chamel, Pethick, Reddy (in prep)
Specific Heat at 10^{12} g/cm3

- Electrons
- Shear mode
- Superfluid mode
- Longitudinal mode

C_v (in units of n_i)

T (K)

10^7 10^8 10^9
Specific Heat at 10^{12} g/cm3

$$C_V \sim C_V^{\text{normal}} \exp \left(-\frac{\Delta}{T} \right)$$

<table>
<thead>
<tr>
<th>T (K)</th>
<th>C_V (in units of n_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Normal Neutrons!
- Shear mode
- Electrons
- Superfluid mode
- Longitudinal mode

Tuesday, July 6, 2010
Shear Mode Velocity & Magnetar QPOs

\[\omega_{n=0, l=2} \approx \frac{2}{c_t} \frac{\Delta R}{R} \]

\[\omega_{n=1} \approx \frac{\pi}{R} \frac{c_t}{R} \frac{\Delta R}{R} \]

Duncan (1998)
Watts & Strohmayer (2006)
Conclusions

Astronomy (Observations)

Astrophysics (Theory)

Nuclear Physics & Many-body Theory

\[\tau_{\text{Cool}} \approx \frac{C_V}{\kappa} (\Delta R)^2 \]

Insights about the nature of matter at extreme density
Back up slides
Mixing

Mixing leads to oscillations

\[
\rho (\text{g/cm}^3)
\]

Longitudinal Lattice Phonon
Superfluid Phonon
Transverse Lattice Phonons

Speed (in units of \(c=3\times10^{10}\) cm/s)

\(10^{11}\)
\(10^{12}\)
\(10^{13}\)
\(10^{14}\)
Dissipative Processes

Electrons

$E(p) = p$

$\omega(p) = c \ p$

IPhs

$\omega(p) = v \ p$

sPhs

Electron-phonon processes

Impurity (Rayleigh) scattering

Multi electron and phonon processes
Dissipative Processes

\[E(p) = p \]
\[\omega(p) = c \, p \]
\[\omega(p) = v \, p \]

Electrons

Electron-phonon processes

Impurity (Rayleigh) scattering

Multi electron and phonon processes
Coupling to Electrons - Landau Damping

Electron particle-hole excitations damp collective modes and vice-versa.

\[\mathcal{L}_{el-ph} = \frac{1}{f_{el-ph}} \partial_i \xi \psi_e^\dagger \psi_e \]

Induced coupling between superfluid phonons and electrons:

\[\mathcal{L}_{el-sPh} \sim \frac{\tilde{g}_{mix}}{v_s^2 (1 - \alpha^2)} \frac{1}{f_{el-ph}} \partial_t \phi \psi_e^\dagger \psi_e \]

where \[\tilde{g}_{mix} = g + \tilde{\gamma} \]

\[\alpha = \frac{c_l}{v_s} \]
Heating in an Accreting Crust

Non-equilibrium reactions:

Electron capture: \(e^- + [A, Z] \rightarrow [A, Z - 1] + \nu_e \text{ + Heat} \)

Neutron transfers: \(n + [A, Z] \rightarrow [A + 1, Z] + \text{Heat} \)

Pycno-nuclear fusion: