Light nuclei in the
Fermionic Molecular Dynamics approach

Thomas Neff
6th ANL/MSU/JINA/INT
FRIB Theory Workshop
Argonne Natl Lab, USA
March 25, 2010
Overview

Effective Nucleon-Nucleon interaction: Unitary Correlation Operator Method
Roth, Neff, Feldmeier, arXiv:1003.3624

- Short-range Correlations
- Correlated Interaction
- \textit{ab initio} Few- and Many-Body Calculations

Many-Body Method:
Fermionic Molecular Dynamics

- Model
- Beryllium Isotopes
- Cluster States in 12C
Argonne V18 (T=0) spins aligned parallel or perpendicular to the relative distance vector

- strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

- strong dependence on the orientation of the spins due to the tensor force

V_{NN} [MeV] vs r_{12} [fm]

- central correlations

- tensor correlations
Argonne V18 (T=0)
spins aligned parallel or perpendicular to the relative distance vector

- strong repulsive core: nucleons can not get closer than ≈ 0.5 fm
- **central correlations**

- strong dependence on the orientation of the spins due to the tensor force
- **tensor correlations**

The nuclear force will induce **strong short-range correlations** in the nuclear wave function.
Unitary Correlation Operator Method

Correlation Operator

- induce short-range (two-body) central and tensor correlations into the many-body state

\[\tilde{C} = \tilde{C}_\Omega \tilde{C}_r = \exp[-i \sum_{i<j} g_{\Omega,ij}] \exp[-i \sum_{i<j} g_{r,ij}] , \quad \tilde{C}^\dagger \tilde{C} = 1 \]

- correlation operator should conserve the symmetries of the Hamiltonian and should be of finite-range, correlated interaction **phase shift equivalent** to bare interaction by construction

Correlated Operators

- correlated operators will have contributions in higher cluster orders

\[\tilde{C}^\dagger \tilde{Q} \tilde{C} = \hat{Q}^{[1]} + \hat{Q}^{[2]} + \hat{Q}^{[3]} + \ldots \]

- two-body approximation: correlation range should be small compared to mean particle distance

Correlated Interaction

\[\tilde{C}^\dagger (\tilde{T} + \tilde{V}) \tilde{C} = \tilde{T} + \tilde{V}_{\text{UCOM}} + \tilde{V}^{[3]}_{\text{UCOM}} + \ldots \]
Central and Tensor Correlations

\[\zeta = \zeta_\Omega \zeta_r \]

\[p = p_r + p_\Omega \]

\[p_r = \frac{1}{2} \left\{ \frac{r}{r} \left(\frac{r}{r} p \right) + \left(\frac{p_r}{r} \right) \frac{r}{r} \right\} , \quad p_\Omega = \frac{1}{2r} \left\{ l \times \frac{r}{r} - \frac{r}{r} \times l \right\} \]
Central and Tensor Correlations

\[\zeta = \zeta_\Omega \zeta_r \]

\[\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega \]

\[\mathbf{p}_r = \frac{1}{2} \left\{ \mathbf{r} \left(\mathbf{r} \cdot \mathbf{p} \right) + \left(\mathbf{p}_r \right) \mathbf{r} \right\}, \quad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{l} \times \mathbf{r} - \mathbf{r} \times \mathbf{l} \right\} \]

Central Correlations

\[\zeta_r = \exp \left\{ -\frac{i}{2} \left\{ \mathbf{p}_r s(r) + s(r) \mathbf{p}_r \right\} \right\} \]

probability density shifted out of the repulsive core

\[S = 0, \quad T = 1 \]
Central Correlations

\[\zeta_r = \exp \left\{ -\frac{i}{2} \left\{ p_r s(r) + s(r)p_r \right\} \right\} \]

- probability density shifted out of the repulsive core

Tensor Correlations

\[\zeta_\Omega = \exp \left\{ -i \vartheta(r) \left\{ \frac{3}{2} (\sigma_1 \cdot p_\Omega)(\sigma_2 \cdot r) + \frac{3}{2} (\sigma_1 \cdot r)(\sigma_2 \cdot p_\Omega) \right\} \right\} \]

- tensor force admixes other angular momenta
Central and Tensor Correlations

Central Correlations

\[\zeta = \zeta_\Omega \zeta_r \]

\[\zeta_r = \exp \left\{ -\frac{i}{2} \left\{ p_r s(r) + s(r) p_r \right\} \right\} \]

\(\Rightarrow \) probability density shifted out of the repulsive core

Tensor Correlations

\[\zeta_\Omega = \exp \left\{ -i \vartheta(r) \left\{ \frac{3}{2} (\sigma_1 \cdot p_\Omega)(\sigma_2 \cdot r) + \frac{3}{2} (\sigma_1 \cdot r)(\sigma_2 \cdot p_\Omega) \right\} \right\} \]

\(\Rightarrow \) tensor force admixes other angular momenta

\[p = p_r + p_\Omega \]

\[p_r = \frac{1}{2} \left\{ \frac{r}{r} \left(\frac{r}{r} p \right) + \left(p \frac{r}{r} \right) \frac{r}{r} \right\}, \quad p_\Omega = \frac{1}{2r} \left\{ I \times \frac{r}{r} - \frac{r}{r} \times I \right\} \]
two-body densities

\[\rho^{(2)}_{S,T}(r_1 - r_2) \quad S = 1, M_S = 1, T = 0 \]

central correlator \(C_r \)
shifts density out of the repulsive core

tensor correlator \(C_\Omega \)
aligns density with spin orientation

Realistic Effective Interaction

Unitary Correlation Operator Method

two-body densities

$\rho_{S,T}^{(2)}(r_1 - r_2) \quad S = 1, M_S = 1, T = 0$

C_r shifts density out of the repulsive core

C_Ω aligns density with spin orientation

both central and tensor correlations are essential for binding

$\langle T \rangle$
$\langle H \rangle$
$\langle V \rangle$

Thomas Neff — FRIB Theory Workshop, 03/25/10
bared interaction has strong off-diagonal matrix elements connecting to high momenta.
Correlated Interaction in Momentum Space

bare interaction has strong off-diagonal matrix elements connecting to high momenta

correlated interaction is more attractive at low momenta

off-diagonal matrix elements connecting low- and high- momentum states are strongly reduced

Correlated Interaction in Momentum Space

bare interaction has **strong off-diagonal** matrix elements connecting to high momenta

correlated interaction is **more attractive** at low momenta

off-diagonal matrix elements connecting low- and high- momentum states are **strongly reduced**

similar to $V_{\text{low-}k}$

• choose tensor correlation range or SRG flow parameter α such that need for three-body forces is minimized

different perspective: don’t try to reproduce the results with the bare interaction but consider V_{UCOM} as a realistic potential
Convergence dramatically improved compared to bare interaction

Binding energy close to experiment

Spectra with V_{UCOM} are of similar quality than with other modern NN forces

Roth, Neff, Feldmeier, arXiv:1003.3624
Hartree-Fock calculations

- Hartree-Fock calculations in spherical $12\,\hbar\omega$ harmonic oscillator basis

- UCOM interaction is less attractive in higher partial waves

- Problems with saturation indicate need for three-body forces

Roth, Neff, Feldmeier, arXiv:1003.3624
Fermionic Molecular Dynamics

Motivation
FMD Wave Functions
Nucleon-Nucleon Interaction
Mean-Field Calculations
Projection After Variation, Variation After Projection and Multiconfiguration
Exotica: Special Challenges

Fermionic Molecular Dynamics

Fermionic

Slater determinant

\[|Q\rangle = \mathcal{A} \left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle \right) \]

- antisymmetrized A-body state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655
Fermionic Molecular Dynamics

Fermionic
Slater determinant

\[|Q\rangle = \mathcal{A}\left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle \right) \]

- antisymmetrized A-body state

Molecular

single-particle states

\[\langle x | q \rangle = \sum_i c_i \exp\left\{ -\frac{(x - b_i)^2}{2a_i} \right\} \otimes |\chi^i, \chi'^i\rangle \otimes |\xi\rangle \]

- Gaussian wave-packets in phase-space (complex parameter \(b_i \) encodes mean position and mean momentum), spin is free, isospin is fixed
- width \(a_i \) is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655
Fermionic Molecular Dynamics

Fermionic
Slater determinant

\[|Q\rangle = \mathcal{A}\left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle \right) \]

- antisymmetrized A-body state

Molecular
single-particle states

\[\langle x | q \rangle = \sum_i c_i \exp\left\{ -\frac{(x - b_i)^2}{2a_i} \right\} \otimes |\chi^i, \chi'^i\rangle \otimes |\xi\rangle \]

- Gaussian wave-packets in phase-space (complex parameter \(b_i \) encodes mean position and mean momentum), spin is free, isospin is fixed
- width \(a_i \) is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655
FMD
Fermionic Molecular Dynamics

Fermionic
Slater determinant

\[|Q\rangle = \mathcal{A}\left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle \right) \]

- antisymmetrized A-body state

Molecular

single-particle states

\[\langle x | q \rangle = \sum_i c_i \exp\left\{ -\frac{(x - b_i)^2}{2a_i} \right\} \otimes |\chi_{i, \uparrow}\rangle \otimes |\xi_i\rangle \]

- Gaussian wave-packets in phase-space (complex parameter \(b_i\) encodes mean position and mean momentum), spin is free, isospin is fixed
- width \(a_i\) is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

see also

Antisymmetrized Molecular Dynamics
H. Horiuchi, Y. Kanada-En’yo

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655
Evaluation of Matrix Elements

> non-orthogonal basis, use inverse overlap matrix

One-Body Operators

\[
\frac{\langle Q \mid \mathcal{T}^{[1]} \mid Q \rangle}{\langle Q \mid Q \rangle} = \sum_{k,l}^A \langle q_k \mid \mathcal{T}^{[1]} \mid q_l \rangle o_{lk}
\]

Two-Body Operators

\[
\frac{\langle Q \mid \mathcal{V}^{[2]} \mid Q \rangle}{\langle Q \mid Q \rangle} = \frac{1}{2} \sum_{k,l,m,n}^A \langle q_k, q_l \mid \mathcal{V}^{[2]} \mid q_m, q_n \rangle (o_{mk}o_{nl} - o_{ml}o_{nk})
\]

\[
o = n^{-1} = \left(\langle q_i \mid q_j \rangle\right)^{-1}
\]
Interaction Matrix Elements

(One-body) Kinetic Energy

\[
\langle q_k | T | q_l \rangle = \langle a_k b_k | T | a_l b_l \rangle \langle \chi_k | \chi_l \rangle \langle \xi_k | \xi_l \rangle
\]

\[
\langle a_k b_k | T | a_l b_l \rangle = \frac{1}{2m} \left(\frac{3}{a_k^* + a_l} - \frac{(b_k^* - b_l)^2}{(a_k^* + a_l)^2} \right) R_{kl}
\]

(Two-body) Potential

- fit radial dependencies by (a sum of) Gaussians

\[
G(x_1 - x_2) = \exp \left\{ - \frac{(x_1 - x_2)^2}{2\kappa} \right\}
\]

- Gaussian integrals

\[
\langle a_k b_k, a_l b_l | G | a_m b_m, a_n b_n \rangle = R_{km} R_{ln} \left(\frac{\kappa}{\alpha_{klmn} + \kappa} \right)^{3/2} \exp \left\{ - \frac{\rho_{klmn}^2}{2(\alpha_{klmn} + \kappa)} \right\}
\]

- analytical formulas for matrix elements
Effective two-body interaction

- FMD model space can’t describe correlations induced by residual medium-long ranged tensor forces
 - use long ranged tensor correlator – “low cutoff” to partly account for that
- no three-body forces, missing spin-orbit strength, radii tend to be too small
 - add phenomenological two-body correction term with a momentum-dependent central and (isospin-dependent) spin-orbit part (about 15% contribution to potential)
 - fit correction term to binding energies and radii of “closed-shell” nuclei (4He, 16O, 40Ca), (24O, 34Si, 48Ca)

Outlook:
 - use three-body or density dependent two-body force instead of two-body correction term
Minimization

- minimize Hamiltonian expectation value with respect to all single-particle parameters \(q_k \)

\[
\min_{\{q_k\}} \frac{\langle Q | H - T_{cm} | Q \rangle}{\langle Q | Q \rangle}
\]

- this is a Hartree-Fock calculation in our particular single-particle basis
- the mean-field may break the symmetries of the Hamiltonian
Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

\[P^\pi = \frac{1}{2} \left(1 + \pi \Pi \right) \]

\[P'_{MK} = \frac{2J + 1}{8\pi^2} \int d^3\Omega \, D^{\dagger}_{MK}(\Omega) \tilde{R}(\Omega) \]

\[P^P = \frac{1}{(2\pi)^3} \int d^3X \, \exp\{ -i(\tilde{P} - P) \cdot X \} \]
PAV, VAP and Multiconfiguration

Projection After Variation (PAV)
- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

\[
P^\pi = \frac{1}{2}(1 + \pi \Pi)
\]

Variation After Projection (VAP)
- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface for heavier nuclei

\[
P^P = \frac{1}{(2\pi)^3} \int d^3X \exp\{-i(P - P) \cdot X\}
\]
Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface for heavier nuclei

Multiconfiguration Calculations

- diagonalize Hamiltonian in a set of projected intrinsic states

\[
\left\{ |Q^{(a)}\rangle , \quad a = 1, \ldots, N \right\}
\]

\[
P^{\pi}_{\sim} = \frac{1}{2} (1 + \pi \Pi)
\]

\[
P^{J}_{MK} \sim = \frac{2J + 1}{8\pi^2} \int d^3\Omega D^{J}_{MK} (\Omega) \tilde{R}(\Omega)
\]

\[
P^{P} = \frac{1}{(2\pi)^3} \int d^3X \exp\{-i(P - P) \cdot X\}
\]
Beryllium Isotopes

Questions

- α-clustering, halos in ^{11}Be and ^{14}Be, $N = 8$ shell closure?

Calculation

- FMD wave functions with two Gaussians per sp-state
- mean field, variation after projection, variation after multiconfiguration mixing
- VAP and multiconfiguration-VAP configurations with mean proton distance as generator coordinate

Observables

- energies
- charge and matter radii, electromagnetic transitions

Results still preliminary!
Beryllium Isotopes

Mean field

[Diagrams of various isotopes showing distributions]
• create configurations by variation after parity and angular momentum projection

➢ large gain in binding energy compared to mean-field result

➢ intrinsic states show pronounced cluster structure. Parameters of 4He and 3He clusters are close to those of the free clusters
Beryllium Isotopes
Variation after Projection

\(^{10}\text{Be} \)

\(^{10}\text{Be} - p \)
\(^{10}\text{Be} - n \)

\(^{11}\text{Be} \)

\(^{11}\text{Be} - p \)
\(^{11}\text{Be} - n \)

\(\text{VAP } 0^+ \)

\(\text{VAP } 1/2^- \)

\(\text{VAP } 0^+ \)

\(\text{VAP } 1/2^+ \)

\(\text{VAP } 0^+ \)

\(\text{VAP } 5/2^+ \)
Beryllium Isotopes

Variation after Projection

\[^{12}\text{Be} \]

- "p^2"
 VAP \(0^+ \)

- "d^2"
 VAP \(0^+ \)

- "s^2"
 VAP \(0^+ \)

\[^{14}\text{Be} \]

- "d^2"
 VAP \(0^+ \)

- "s^2"
 VAP \(0^+ \)
Mean proton distance

\[R_{pp}^2 = \frac{1}{Z^2} \left(\sum_{i<j} (r_i - r_j)^2 \right) \]

\(R_{pp} \) as a measure of \(\alpha \)-cluster distance

Beryllium Isotopes

Mean proton distance as generator coordinate

Thomas Neff — FRIB Theory Workshop, 03/25/10
Beryllium Isotopes

Mean proton distance as generator coordinate

\[E_{\text{VAP}}(R_{pp}) \text{ [MeV]} \]

\[R_{pp} \text{ [fm]} \]

\[11^\text{Be} - "p", "s" \text{ and } "d"\text{-configurations} \]

- "s"- and "d"-configurations will mix in 1/2\(^+\) state
- energy surfaces for "p" and "s" similar to those in \(^{10}\text{Be}\)
- "d" surface has minimum at larger cluster distance \(\rightarrow d\)-configuration has a polarized \(^{10}\text{Be}\) core
large correlation energies due to cluster structure
loosely bound systems gain most by configuration mixing
"almost correct" level ordering in ^{11}Be

- ^{12}Be ground state dominated by p^2 configuration, sizeable admixture of s^2 and d^2 configurations which strongly mix
Beryllium Isotopes
Charge Radii

Zakova, Neff, et al., J. Phys. G, accepted for publication
Beryllium Isotopes

Electromagnetic transitions

<table>
<thead>
<tr>
<th>^{10}Be</th>
<th>FMD(Multiconfig)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(E2; 2^+_1 \rightarrow 0^+_1)$</td>
<td>11.27 e²fm⁴</td>
<td>9.2 ± 0.3 e²fm⁴</td>
</tr>
<tr>
<td>$B(E2; 2^+_2 \rightarrow 0^+_1)$</td>
<td>1.00 e²fm⁴</td>
<td>0.11 ± 0.02 e²fm⁴</td>
</tr>
<tr>
<td>$B(E2; 0^+_2 \rightarrow 2^+_1)$</td>
<td>4.99 e²fm⁴</td>
<td>3.2 ± 1.9 e²fm⁴</td>
</tr>
<tr>
<td>$B(E1; 0^+_2 \rightarrow 1^-_1)$</td>
<td>0.013 e²fm²</td>
<td>0.013 ± 0.004 e²fm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>^{11}Be</th>
<th>FMD(Multiconfig)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(E1; 1/2^+_1 \rightarrow 1/2^-_1)$</td>
<td>0.020 e²fm²</td>
<td>0.099 ± 0.010 e²fm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>^{12}Be</th>
<th>FMD(Multiconfig)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(E2; 2^+_1 \rightarrow 0^+_1)$</td>
<td>8.27 e²fm⁴</td>
<td>8.0 ± 3.0 e²fm⁴</td>
</tr>
<tr>
<td>$B(E2; 0^+_2 \rightarrow 2^+_1)$</td>
<td>6.50 e²fm⁴</td>
<td>7.0 ± 0.6 e²fm⁴</td>
</tr>
<tr>
<td>$M(E0; 0^+_1 \rightarrow 0^+_2)$</td>
<td>1.05 efm²</td>
<td>0.87 ± 0.03 efm²</td>
</tr>
<tr>
<td>$B(E1; 0^+_1 \rightarrow 1^-_1)$</td>
<td>0.08 e²fm²</td>
<td>0.051 ± 0.003 e²fm²</td>
</tr>
</tbody>
</table>

11Be-10Be Overlaps

Spectroscopic Factors

<table>
<thead>
<tr>
<th></th>
<th>11Be</th>
<th>10Be</th>
<th>l_j</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2⁺</td>
<td>0⁺</td>
<td>s₁/₂</td>
<td>0.937</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2⁺</td>
<td>d₅/₂</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2⁺</td>
<td>d₃/₂</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>5/2⁺</td>
<td>0⁺</td>
<td>d₅/₂</td>
<td>0.543</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2⁺</td>
<td>s₁/₂</td>
<td>0.329</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2⁺</td>
<td>d₅/₂</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td>1/2⁻</td>
<td>0⁺</td>
<td>p₁/₂</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2⁺</td>
<td>p₃/₂</td>
<td>0.779</td>
<td></td>
</tr>
</tbody>
</table>

- extended s-wave halo
- $s_{1/2}$ spectroscopic factor larger than results obtained from knockout and transfer reactions
Cluster States in ^{12}C

Astrophysical Motivation
- Helium burning: triple alpha-reaction
- Is the Hoyle state a pure α-cluster state?
- Other excited 0^+ and 2^+ states

Structure
- Compare FMD results to microscopic α-cluster model
- Analyze wave functions in harmonic oscillator basis
- No-Core Shell Model Calculations?
Cluster States in ^{12}C

Triple α Reaction

- AGB star (radius ~ 1-1.5 AU)
- Asymptotic Giant Branch star
- Close-up of core region for a $1 M_\odot$
- Hydrogen-burning shell
- Helium layer
- Helium-burning shell
- Carbon-oxygen core (no fusion)

![Diagram of AGB star and stellar core](image)

![Diagram of triple alpha reaction](image)

\[
\begin{align*}
\text{7.2747} & \quad 3\alpha \\
\text{7.6542} & \quad 0^+ \\
\text{4.4389} & \quad 2^+ \\
\text{7.3666} & \quad \alpha + ^8\text{Be}
\end{align*}
\]

The Triple Alpha Process (Helium Fusion)

- ^4He
- ^6He (alpha particle)
- ^8Be
- ^{12}C
- ^{16}O

![Diagram of triple alpha process](image)

Thomas Neff — FRIB Theory Workshop, 03/25/10
Cluster States in 12C

Microscopic α-Cluster Model

Basis States

- describe Hoyle State as a system of 3 4He nuclei

$$\left| \psi_{3\alpha}(R_1, R_2, R_3); JMK\pi \right> = P^J_{MK}P^\pi A \left\{ \left| \psi_\alpha(R_1) \right> \otimes \left| \psi_\alpha(R_2) \right> \otimes \left| \psi_\alpha(R_3) \right> \right\}$$

Volkov Interaction

- simple central interaction
- parameters adjusted to reproduce α binding energy and radius, $\alpha - \alpha$ scattering data and C12 ground state energy
- only reasonable for 4He, 8Be and 12C nuclei

‘BEC’ wave functions

- interpretation of the Hoyle state as a Bose-Einstein Condensate of α-particles by Funaki, Tohsaki, Horiuchi, Schuck, Röpke
- same interaction and α-cluster parameters used
Cluster States in 12C

Basis States

- 20 FMD states obtained in Variation after Projection on 0^+ and 2^+ with constraints on the radius
- 42 FMD states obtained in Variation after Projection on parity with constraints on radius and quadrupole deformation
- 165 α-cluster configurations
 ➼ projected on angular momentum and linear momentum

Interaction

- not tuned for $\alpha-\alpha$ scattering or 12C properties
Cluster States in 12C

α-α Phaseshifts

- Phaseshifts calculated with cluster configurations only (dashed lines)
- Phaseshifts calculated with additional FMD VAP configurations in the interaction region (solid lines)
- only cluster configurations included

Similar quality for description of α-α-scattering
Comparison of Cluster States in ^{12}C

E$-E_{3\alpha}$ [MeV]

^{12}C

- 2^-
- 4^+
- 0^+
- 2^+

FMD

Experiment

α–cluster
Cluster States in 12C

Comparison

<table>
<thead>
<tr>
<th></th>
<th>Exp1</th>
<th>Exp2</th>
<th>Exp3</th>
<th>FMD</th>
<th>α-cluster</th>
<th>‘BEC’4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(0^+_1)$</td>
<td>-92.16</td>
<td></td>
<td></td>
<td>-92.64</td>
<td>-89.56</td>
<td>-89.52</td>
</tr>
<tr>
<td>$E^*(2^+_1)$</td>
<td>4.44</td>
<td></td>
<td></td>
<td>5.31</td>
<td>2.56</td>
<td>2.81</td>
</tr>
<tr>
<td>$E(3\alpha)$</td>
<td>-84.89</td>
<td></td>
<td></td>
<td>-83.59</td>
<td>-82.05</td>
<td>-82.05</td>
</tr>
<tr>
<td>$E(0^+_2) - E(3\alpha)$</td>
<td>0.38</td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>$E(0^+_3) - E(3\alpha)$</td>
<td>(3.0)</td>
<td>2.7(3)</td>
<td>3.96(5)</td>
<td>2.84</td>
<td>2.81</td>
<td></td>
</tr>
<tr>
<td>$E(2^+_2) - E(3\alpha)$</td>
<td>(3.89)</td>
<td>2.6(3)</td>
<td>6.63(3)</td>
<td>2.77</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>$r_{\text{charge}}(0^+_1)$</td>
<td>2.47(2)</td>
<td></td>
<td></td>
<td>2.53</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>$r(0^+_1)$</td>
<td></td>
<td>2.39</td>
<td>2.40</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r(0^+_2)$</td>
<td></td>
<td>3.38</td>
<td>3.71</td>
<td>3.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r(0^+_3)$</td>
<td></td>
<td>4.62</td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r(2^+_1)$</td>
<td></td>
<td>2.50</td>
<td>2.37</td>
<td>2.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r(2^+_2)$</td>
<td></td>
<td>4.43</td>
<td>4.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M(E0, 0^+_1 \rightarrow 0^+_2)$</td>
<td>5.4(2)</td>
<td></td>
<td></td>
<td>6.53</td>
<td>6.52</td>
<td>6.45</td>
</tr>
<tr>
<td>$B(E2, 2^+_1 \rightarrow 0^+_1)$</td>
<td>7.6(4)</td>
<td></td>
<td></td>
<td>8.69</td>
<td>9.16</td>
<td></td>
</tr>
<tr>
<td>$B(E2, 2^+_1 \rightarrow 0^+_2)$</td>
<td>2.6(4)</td>
<td></td>
<td></td>
<td>3.83</td>
<td>0.84</td>
<td></td>
</tr>
</tbody>
</table>

Experimental situation for 0^+_3 and 2^+_2 states still unsettled

2^+_2 resonance at 1.8 MeV above threshold included in NACRE compilation
<table>
<thead>
<tr>
<th></th>
<th>Exp^1</th>
<th>Exp^2</th>
<th>Exp^3</th>
<th>FMD</th>
<th>α-cluster</th>
<th>‘BEC’^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(0^+_1)$</td>
<td>-92.16</td>
<td></td>
<td></td>
<td>-92.64</td>
<td>-89.56</td>
<td>-89.52</td>
</tr>
<tr>
<td>$E^*(2^+_1)$</td>
<td>4.44</td>
<td></td>
<td></td>
<td>5.31</td>
<td>2.56</td>
<td>2.81</td>
</tr>
<tr>
<td>$E(3\alpha)$</td>
<td>-84.89</td>
<td></td>
<td></td>
<td>-83.59</td>
<td>-82.05</td>
<td>-82.05</td>
</tr>
<tr>
<td>$E(0^+_2) - E(3\alpha)$</td>
<td>0.38</td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>$E(0^+_3) - E(3\alpha)$</td>
<td>(3.0)</td>
<td></td>
<td></td>
<td>2.7(3)</td>
<td>3.96(5)</td>
<td>2.84</td>
</tr>
<tr>
<td>$E(2^+_2) - E(3\alpha)$</td>
<td>(3.89)</td>
<td></td>
<td></td>
<td>2.6(3)</td>
<td>6.63(3)</td>
<td>2.77</td>
</tr>
</tbody>
</table>

$r_{\text{charge}}(0^+_1)$	2.47(2)	2.53	2.54			
$r(0^+_1)$		2.39	2.40	2.40		
$r(0^+_2)$		3.38	3.71	3.83		
$r(0^+_3)$		4.62	4.75			
$r(2^+_1)$		2.50	2.37	2.38		
$r(2^+_2)$		4.43	4.02			

$M(E0, 0^+_1 \rightarrow 0^+_2)$	5.4(2)	6.53	6.52	6.45		
$B(E2, 2^+_1 \rightarrow 0^+_1)$	7.6(4)	8.69	9.16			
$B(E2, 2^+_2 \rightarrow 0^+_2)$	2.6(4)	3.83	0.84			

Experimental situation for 0^+_3 and 2^+_2 states still unsettled.

2^+_2 resonance at 1.8 MeV above threshold included in NACRE compilation.

Calculated in bound state approximation.

Include $^8\text{Be}+^4\text{He}$ channels for two-body decay.
Cluster States in ^{12}C

Electron Scattering Data

- compare with precise electron scattering data up to high momenta in Distorted Wave Born Approximation
- use intrinsic density

$$\rho(\mathbf{x}) = \sum_{k=1}^{A} \langle \psi | \delta(\mathbf{x}_k - \mathbf{x} - \mathbf{X}) | \psi \rangle$$

Cluster States in 12C

Important Configurations

- Calculate the overlap with FMD basis states to find the most important contributions to the Hoyle state

\[
\begin{align*}
\langle \cdot | 0^+_1 \rangle &= 0.94 \\
\langle \cdot | 2^+_1 \rangle &= 0.93 \\
\langle \cdot | 0^+_2 \rangle &= 0.72 \\
\langle \cdot | 0^+_2 \rangle &= 0.71 \\
\langle \cdot | 0^+_2 \rangle &= 0.61 \\
\langle \cdot | 0^+_2 \rangle &= 0.61 \\
\langle \cdot | 3^-_1 \rangle &= 0.83 \\
\langle \cdot | 0^+_3 \rangle &= 0.50 \\
\langle \cdot | 0^+_3 \rangle &= 0.49 \\
\langle \cdot | 0^+_3 \rangle &= 0.44 \\
\langle \cdot | 0^+_3 \rangle &= 0.41
\end{align*}
\]

FMD basis states are not orthogonal!

loosely bound, gas-like states
Calculate the overlap of FMD wave functions with pure α-cluster model space

$$N_{\alpha} = \langle \psi \mid P_{3\alpha} \mid \psi \rangle$$

- 2_2^+
- 0_3^+
- 3_1^-
- 0_2^+
- 2_1^+
- 0_1^+

Hoyle state has 15% non-alpha admixtures
Cluster States in ^{12}C
Harmonic Oscillator $N\hbar\Omega$ Excitations

$$\text{Occ}(N) = \langle \psi \mid \delta \left(\sum_i \left(H_i^{\text{HO}} / \hbar\Omega - 3/2 \right) - N \right) \mid \psi \rangle$$
Cluster States in 12C
Harmonic Oscillator $N\hbar \Omega$ Excitations

$$\text{Occ}(N) = \langle \psi | \delta \left(\sum_i (H_i^{HO}/\hbar \Omega - 3/2) - N \right) | \psi \rangle$$

Cluster Model

0\textsubscript{1}+

2\textsubscript{1}+

3\textsubscript{1}-

0\textsubscript{2}+

0\textsubscript{3}+

2\textsubscript{2}+
Cluster States in 12C

α-cluster states in the No-Core Shell Model?

- compare spectra in NCSM and α-cluster model using the Volkov interaction
- bare interaction used in NCSM calculations
 - good agreement for ground state band (0^+_1, 2^+_1, 4^+_1)
 - very slow convergence for cluster states

Binding energies

<table>
<thead>
<tr>
<th></th>
<th>4He</th>
<th>12C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>-27.3 MeV</td>
<td>-89.6 MeV</td>
</tr>
<tr>
<td>NCSM</td>
<td>-28.3 MeV</td>
<td>-95.4 MeV</td>
</tr>
</tbody>
</table>

![Graph showing energy levels](image-url)
Cluster States in 12C

α-cluster states in the No-Core Shell Model?

Three-body forces do not help!

Advantages/Disadvantages of FMD approach

FMD vs ab initio

Advantages
- Basis very flexible, clusters and halo structure can be described
- Can be used for light p/sd-shell nuclei
- Many observables can be calculated
- Intrinsic states provide an “intuitive” picture of the nucleus

Disadvantages
- Interaction has to be soft and given in operator representation
- Does not provide “exact” results for given interaction, not straightforward to check convergence by “increasing model space size”

FMD vs few-body models

Advantages
- Microscopic - antisymmetrization
- Cluster structure appears naturally, includes polarization effects
- Uses nucleon-nucleon interaction, no need for phenomenological potentials

Disadvantages
- Numerical effort, “exact” calculations are not possible
- Not possible to adjust thresholds “by hand”
- Much more difficult to include boundary conditions for resonance or scattering states
Thanks

to my Collaborators

S. Bacca, A. Cribeiro, R. Cussons, H. Feldmeier, P. J. Ginsel, B. Hellwig, K. Langanke, R. Torabi, D. Weber

GSI Darmstadt

H. Hergert, R. Roth

Institut für Kernphysik, TU Darmstadt