Energy Density Functionals for Nuclei

Dick Furnstahl
Department of Physics
Ohio State University

March, 2010

For references and more details, see:

- unedf.org
- “Toward ab initio density functional theory for nuclei,” arXiv:0906.1463
Overview: EDF’s and DFT

The UNEDF project

New developments: Constraints, optimization, . . .

Non-empirical EDF’s and ab-initio DFT

Summary
Outline

Overview: EDF’s and DFT

The UNEDF project

New developments: Constraints, optimization, ...

Non-empirical EDF’s and ab-initio DFT

Summary
Density functional theory (DFT) as justification for energy density functional (EDF) approach

- Hohenberg-Kohn: There exists an energy functional $E_{v_{\text{ext}}}[\rho]$ of $\rho(x)$ for external potential v_{ext}:

$$E_{v_{\text{ext}}}[\rho] = F_{\text{HK}}[\rho] + \int d\mathbf{x} v_{\text{ext}}(\mathbf{x}) \rho(\mathbf{x})$$

Minimize $\Rightarrow E_{gs}, \rho_{gs}$

- Useful if you can approximate the energy functional; suggests a hunting license for EDF’s

- F_{HK} is universal (same for any external v_{ext}), so should be able to add any v_{ext} we want!

- Kohn-Sham (KS) DFT: Introduce orbitals for $\rho(x)$
Unraveling the magic of DFT [Kutzelnigg (2008)]

- Wavefunction-based: for anti-symmetric A-body $|\psi\rangle$, find $E_{gs} = \min_{\psi} \langle \psi | \hat{H} | \psi \rangle$ (CI, CC use a single-particle basis for $|\psi\rangle$)

- DFT: fermion densities as basic variables
 - Common but misleading statements:
 "All information about a quantum mechanical ground state is contained in its electron density ρ."
 "The energy is completely expressible in terms of the density alone."
 - At odds with kinetic and interaction energies needing $(1, 2, \cdots)$–particle density matrices!
Wavefunction-based: for anti-symmetric A-body $|\psi\rangle$, find $E_{gs} = \min_{\psi} \langle \psi | \hat{H} | \psi \rangle$ (CI, CC use a single-particle basis for $|\psi\rangle$)

DFT: fermion densities as basic variables

- Common but misleading statements:

 "All information about a quantum mechanical ground state is contained in its electron density ρ."

 "The energy is completely expressible in terms of the density alone."

- At odds with kinetic and interaction energies needing $(1, 2, \cdots)$-particle density matrices!

Key: WF formulation deals with single, fixed Hamiltonian, E stationary to density matrix (or Ψ) variations, not just $\rho(x)$

DFT: Consider a family of Hamiltonians $\hat{H}[v] \rightarrow E[v]$, then

$F_{HK}[\rho] = \min_v \{ E[v] - \int dx \, v(x) \rho(x) \}$ and

$E[v] = \min_{\rho} \{ F[\rho] + \int dx \, v(x) \rho(x) \} \equiv \min_{\rho} \{ E_v[\rho] \}$

\Rightarrow DFT is based on Legendre transforms (see arXiv:0906.1463)
Challenges for nuclear DFT (cf. Coulomb DFT)

- Difficult conventional nuclear Hamiltonians
 - Sources of non-perturbative physics for NN interaction
 1. Strong short-range repulsion ("hard core")
 2. Iterated tensor interactions (e.g., from pion exchange)
 3. Near zero-energy bound states (e.g., deuteron)
 - Non-negligible many-body forces

- Non-trivial implementation issues
 - Essential role of pairing (so like HFB rather than HF)
 - Important long-range correlations
 - Some observables we want are not KS-DFT observables
 - We don’t have a v_{ext}!
 - Symmetry breaking in finite, self-bound systems (translation, rotation, number, . . .)
 \implies What about symmetry restoration?
Paths to a nuclear energy functional (EDF)

1. Improve empirical energy functional (Skyrme, Gogny or RMF)

2. Emulate Coulomb DFT: LDA based on precision calculation of uniform system $E[\rho] = \int d\mathbf{r} \mathcal{E}(\rho(\mathbf{r}))$ plus constrained gradient corrections ($\nabla \rho$ factors)

 - Fayans and collaborators (e.g., nucl-th/0009034)

 \[E_v = \frac{2}{3} \epsilon_F \rho_0 \left[a^+ \frac{1-h^+_{1}}{1-h^+_{2}} x^+ \right. \\
 \left. + a^- \frac{1-h^-_{1}}{1-h^-_{2}} x^- \right] \]

 where $x_{\pm} = \frac{(\rho_n \pm \rho_p)}{2 \rho_0}$

 - Neutron drops in traps

 - SLDA+ (Bulgac et al.)

3. Construct Kohn-Sham DFT with EFT-based, RG-softened V's

 UNEDF plan: Try them all, mix and match, . . .
Outline

Overview: EDF's and DFT

The UNEDF project

New developments: Constraints, optimization, ...

Non-empirical EDF's and ab-initio DFT

Summary
SciDAC 2 Project: **Building a Universal Nuclear Energy Density Functional**

- Collaboration of physicists, applied mathematicians, and computer scientists → prototype for FRIB theory
- Funding in US but international collaborators also
Goals of SciDAC 2 Project: *Building a Universal Nuclear Energy Density Functional*

- Understand nuclear properties “for element formation, for properties of stars, and for present and future energy and defense applications”
- Scope is all nuclei with particular interest in reliable calculations of unstable nuclei and in reactions
 \[\rightarrow \text{Density functional theory (DFT) is method of choice} \]
- Order of magnitude improvement over present capabilities
 \[\rightarrow \text{precision calculations of masses, \ldots} \]
- Maximum predictive power with well-quantified uncertainties
- Connected to the best microscopic physics

[See unedf.org for background, references, and highlights.]
UNEDF is a collaboration of physicists, computer scientists and applied mathematicians using high-performance computing to explore the nuclear landscape. Point to the buttons at left to highlight computational sub-projects; click for details. Refresh for more.
Good News

UNEDF collaborators Steve Pieper and Bob Wiringa awarded APS Bonner Prize
 The Tom W. Bonner Prize is the highest award for research given by the APS Division of Nuclear Physics. Full details on the award to Steve and Bob are available.

DOE awards 40 million processor hours for computational nuclear structure
 For the third straight year, the DOE INCITE program awarded a large number of hours for UNEDF computational nuclear physics projects. More details are available.

Announcements (see also Meetings and Job Postings and News Archive)

Leadership Class Configuration Interaction (LCCI) Code Meeting
 San Diego State University, San Diego, CA
 March 11-13, 2010 (contact James Vary)

Fourth LACM-EFES-JUSTIPEN workshop at Oak Ridge National Laboratory
 March 15-17, 2010 (with additional days March 18, 19 for more individual collaborations)

Annual UNEDF Collaboration Meeting, MSU
 June 21-25, 2010

Argonne Computational Postdoctoral Fellowships

For more information on UNEDF, please contact witek@utk.edu
For a popular description of UNEDF, see the SciDAC Review article
UNEDF is a collaboration of physicists, computer scientists and applied mathematicians using high-performance computing to explore the nuclear landscape. Point to the buttons at left to highlight computational sub-projects; click for details. Refresh for more.
One-slide summaries targeted for broad audience
Notes with details and references
UNEDF One-Page Highlights

On this page are links to one-slide summaries of UNEDF-related research accomplishments, plus notes giving contacts and references along with brief explanations of the technical details. All are in pdf format. See also the UNEDF Highlights" page.

- UNEDF-TOPS eigensolver collaboration: Breakthrough nuclear science [notes]
- Microscopic description of nuclear fission [notes]
- Building medium-mass atomic nuclei from scratch: coupled cluster [notes]
- Computing masses of atomic nuclei [notes]
- Discovering the secrets buried in theories [notes]
- The uNclear Nuclear Pairing [notes]
- For atomic nuclei, three's a crowd: Enabling microscopic calculations of nuclei [notes]
- Building the UNEDF from the ground up [notes]
- Towards improved cross sections on medium and heavy unstable nuclides [notes]
- High-performance code for nuclear level density [notes]
- Predictions for Proton-Dripping Fluorine-14 [notes]
- Ab initio no-core shell model (NCSM) and resonating-group method (RGM)

For more information on UNEDF, please contact witek@utk.edu
For a popular description of UNEDF, see the SciDAC Review article
Major UNEDF research areas

1 Ab initio structure — Nuclear wf’s from microscopic NN···N
 - Methods: GFMC/AFMC, CI (NCSM/NCFC), CC
 - Interactions: AV18/ILx, chiral EFT $\rightarrow V_{\text{low } k}$, V_{SRG}

2 Ab initio energy functionals — DFT from microscopic NN···N
 - Cold atoms — superfluid LDA+ \Rightarrow nuclear DFT
 - $\chi\text{EFT} \rightarrow V_{\text{low } k} \rightarrow \text{MBPT} \rightarrow \text{DME functional}$

3 DFT applications — Technology to calculate observables
 - Skyrme HFB+ for all nuclei (solvers)
 - Fitting functionals to data (e.g., correlation analysis)

4 DFT extensions — Long-range correlations, excited states, . . .
 - Alphabet soup: LACM, GCM, TDDFT, QRPA, CI, . . .

5 Reactions – coupled channels, optical potentials . . .
 - Ab initio reactions: NCSM+RGM
Figure 1. The theoretical methods and computational techniques used to solve the nuclear many-body problem. On this chart of the nuclides in the (N,Z)-plane, the black squares represent stable nuclei and the yellow squares indicate unstable nuclei that have been produced and studied in the laboratory. The many thousands of these unstable nuclei yet to be explored are indicated in green (terra incognita). Except for the lightest nuclei, where it has been reached experimentally, the neutron drip line (the rightmost border of the nuclear landscape) has to be estimated on the basis of nuclear models—hence it is very uncertain due to the dramatic extrapolations involved. The red vertical and horizontal lines show the magic numbers, reflecting regions where nuclei are expected to be more tightly bound and have longer half-lives. The anticipated path of the astrophysical r-process responsible for nucleosynthesis of heavy elements is also shown (purple line). The thick dotted lines indicate domains of major theoretical approaches to the nuclear many-body problem. For the lightest nuclei, \textit{ab initio} calculations (Green’s function Monte Carlo, no-core shell model, coupled cluster method), based on the bare nucleon–nucleon interaction, are possible (red). Medium-mass nuclei can be treated by configuration interaction techniques (interacting shell model, in green). For heavy nuclei, the density functional theory based on self-consistent/mean field theory (blue) is the tool of choice. By investigating the intersections between these theoretical strategies, one aims at nothing less than developing a unified description of the nucleus.
One Skyrme functional (∼10–20 parameters) describes all nuclei from few-body to superheavies

9,210 nuclei in less than one day on ORNL Jaguar (Cray XT4)

Under development: optimization and correlation analysis tools

Extending optimization dataset to symmetry-unrestricted nuclei to constrain time-odd terms
Nuclear DFT: works well for BE differences

S. Cwiok, P.H. Heenen, WN

Stoitsov et al., 2008

- Global DFT mass calculations: HFB mass formula: $\Delta m \sim 700$ keV
Issues with empirical EDF’s

- Density dependencies might be too simplistic
- Isovector components not well constrained
- No (fully) systematic organization of terms in the EDF
- Difficult to estimate theoretical uncertainties (extrapolation)
- Where are the pions?
- What’s the connection to many-body forces?
- Pairing part of the EDF not treated on same footing
- and so on . . .

⇒ Extend conventional EDF form and analysis
⇒ Turn to microscopic many-body theory for guidance
Outline

Overview: EDF’s and DFT

The UNEDF project

New developments: Constraints, optimization, ...

Non-empirical EDF’s and ab-initio DFT

Summary
Constraints from external potentials (preliminary)

- Ab initio: neutrons in external potentials ("neutron drops")
 - Here: GFMC, AFDMC (Carlson et al.); NCFC/MFDn (Maris et al.)

![Graph showing constraints from external potentials](image)

- Compare vs. Skyrme EDF for two different oscillator ω's
 - For larger ω, Skyrme energies too low and radius too small
 \implies more repulsive isovector gradient terms needed?

- Much more to come! (including CC, ab initio DFT)
Skyrme generalizations based on EFT principles

- Ability to use local densities based on short range of nuclear interactions compared to variations in local and non-local density matrix \(\Rightarrow\) use separation of scales

- Density functional

\[
E = \int d^3 r \left[\frac{\hbar^2}{2m} \tau_0 + H_{\text{Skyrme}}(\rho_0, \rho_1, \tau_0, \tau_1, s_0, s_1, \ldots) + H_{\text{Coul.}}(\rho_p) \right]
\]

- Densities

\[
\rho = \sum_i \varphi_i^\dagger \varphi_i, \quad \tau = \sum_{i, \mu} (\nabla_\mu \varphi_i^\dagger)(\nabla_\mu \varphi_i), \quad j, J : \text{currents}
\]

\[
s_\nu = \sum_i \varphi_i^\dagger \sigma_\nu \varphi_i, \quad T_\nu = \sum_{i, \mu} (\nabla_\mu \varphi_i^\dagger)\sigma_\nu(\nabla_\mu \varphi_i), \quad \rho_0 = \rho_n + \rho_p, \quad \rho_1 = \rho_n - \rho_p, \ldots
\]

- Strong interaction energy density \(H_{\text{Skyrme}}\)

\[
\begin{align*}
H_{0}^{\text{even}} &= C_{0}^{\rho}(\rho_0)\rho_0^2 + C_{0}^{\Delta \rho} \rho_0 \Delta \rho_0 + C_{0}^{\tau} \rho_0 \tau_0 + C_{0}^{J} J_0^2 + C_{0}^{\nabla J} \rho_0 \nabla \cdot J_0, \\
H_{1}^{\text{even}} &= C_{1}^{\rho}(\rho_0)\rho_1^2 + C_{1}^{\Delta \rho} \rho_1 \Delta \rho_1 + C_{1}^{\tau} \rho_1 \tau_1 + C_{1}^{J} J_1^2 + C_{1}^{\nabla J} \rho_1 \nabla \cdot J_1, \\
H_{0}^{\text{odd}} &= C_{0}^{s}(\rho_0)s_0^2 + C_{0}^{\Delta s} s_0 \cdot \Delta s_0 + C_{0}^{sT} s_0 \cdot T_0 + C_{0}^{J} j_0^2 + C_{0}^{\nabla j} s_0 \cdot (\nabla \times j_0), \\
H_{1}^{\text{odd}} &= C_{1}^{s}(\rho_0)s_1^2 + C_{1}^{\Delta s} s_1 \cdot \Delta s_1 + C_{1}^{sT} s_1 \cdot T_1 + C_{1}^{J} j_1^2 + C_{1}^{\nabla j} s_1 \cdot (\nabla \times j_1).
\end{align*}
\]

- Expand in densities and gradients
- Includes time-odd fields \(\Rightarrow\) new domain to explore
- Gogny EDF can be accurately cast in same form [arXiv:1002.3646]
Energy density functional for spherical nuclei (II)

We can write the N³LO spherical energy density as a sum of contributions from zero, second, fourth, and sixth orders:

\[\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_2 + \mathcal{H}_4 + \mathcal{H}_6, \]

where

\[\mathcal{H}_0 = C_{00}^0 R_0 \Delta R_0, \]

\[\mathcal{H}_2 = C_{20}^0 R_0 \Delta R_0 + C_{02}^0 R_0 R_2 \]

[0.5ex] + \[C_{11}^0 R_0 \vec{\mathbf{J}} \cdot \vec{\mathbf{J}}_1, + C_{01}^1 \vec{\mathbf{J}}_1^2, \]

Energy densities \(\mathcal{H}_0 \) and \(\mathcal{H}_2 \) correspond, of course, to the standard Skyrme functional with \(C_{00}^0 = C^p \), \(C_{20}^0 = C^\Delta, \) \(C_{02}^0 = C^\tau, \) \(C_{11}^0 = C^{\nabla J}, \) and \(C_{01}^1 = C^{J^1}. \)

At fourth order, the energy density reads

\[\mathcal{H}_4 = C_{40}^0 R_0 \Delta^2 R_0 + C_{22}^0 R_0 \Delta R_2 \]

+ \[C_{04}^0 R_4 + C_{02}^2 R_2 R_2 \]

+ \[D_{22}^0 R_0 \sum_{ab} \vec{\nabla}_a \vec{\nabla}_b \vec{R}_{2ab} + D_{02}^2 \sum_{ab} \vec{R}_{2ab} \vec{R}_{2ab} \]

+ \[C_{11}^1 \vec{J}_1 \cdot \Delta \vec{J}_1 + C_{03}^1 \vec{J}_1 \cdot \vec{J}_3 \]

+ \[D_{11}^1 \vec{J}_1 \cdot \vec{\nabla} (\vec{\nabla} \cdot \vec{J}_1) \]

+ \[D_{31}^0 \vec{J}_1 \cdot \vec{R}_0 (\vec{\nabla} \cdot \vec{J}_1) + C_{13}^0 \vec{R}_0 (\vec{\nabla} \cdot \vec{J}_3) \]

+ \[C_{11}^2 R_2 (\vec{\nabla} \cdot \vec{J}_1) + D_{11}^2 \sum_{ab} \vec{R}_{2ab} \vec{\nabla}_a \vec{J}_{1b}, \]

At sixth order, the energy density reads

\[\mathcal{H}_6 = C_{00}^0 R_0 \Delta^3 R_0 + C_{42}^0 R_0 \Delta^2 R_2 \]

+ \[C_{24}^0 R_0 \Delta R_4 + C_{06}^0 R_0 R_6 \]

+ \[C_{22}^2 R_2 \Delta R_2 + C_{04}^2 R_2 R_4 \]

+ \[D_{42}^0 R_0 \sum_{ab} \vec{\nabla}_a \vec{\nabla}_b \vec{R}_{2ab} + D_{24}^0 R_0 \sum_{ab} \vec{\nabla}_a \vec{\nabla}_b \vec{R}_{4ab} \]

+ \[E_{22}^0 \sum_{ab} \vec{R}_{2ab} \vec{R}_{2ab} + E_{04}^2 \sum_{ab} \vec{R}_{2ab} \vec{R}_{2ab} \]

+ \[C_{41}^1 \vec{J}_1 \cdot \Delta^2 \vec{J}_1 + C_{23}^1 \vec{J}_1 \cdot \Delta \vec{J}_3 \]

+ \[C_{05}^1 \vec{J}_1 \cdot \vec{J}_5 + C_{03}^3 \vec{J}_3 \cdot \vec{J}_3 \]

+ \[D_{41}^1 \vec{J}_1 \cdot \Delta \vec{\nabla} (\vec{\nabla} \cdot \vec{J}_1) + D_{23}^1 \vec{J}_1 \cdot \vec{\nabla} (\vec{\nabla} \cdot \vec{J}_3) \]

+ \[E_{23}^1 \sum_{abc} \vec{J}_1a \vec{\nabla}_a \vec{\nabla}_c \vec{J}_{3abc} + D_{03}^3 \sum_{abc} \vec{J}_{3abc} \vec{J}_{3abc} \]

+ \[C_{01}^0 \vec{R}_0 \Delta (\vec{\nabla} \cdot \vec{J}_1) + C_{33}^0 R_0 \Delta (\vec{\nabla} \cdot \vec{J}_3) \]

+ \[C_{15}^0 \vec{R}_0 (\vec{\nabla} \cdot \vec{J}_5) + C_{31}^2 R_2 \Delta (\vec{\nabla} \cdot \vec{J}_1) \]

+ \[C_{13}^2 R_2 (\vec{\nabla} \cdot \vec{J}_3) + C_{04}^4 R_4 (\vec{\nabla} \cdot \vec{J}_1) \]

+ \[D_{03}^3 \vec{R}_0 \sum_{abc} \vec{\nabla}_a \vec{\nabla}_b \vec{\nabla}_c \vec{J}_{3abc} + D_{13}^3 \sum_{abc} \vec{R}_{2ab} \vec{\nabla}_a \vec{J}_{3bc} \]

+ \[D_{31}^2 \sum_{ab} \vec{R}_{2ab} \Delta \vec{\nabla}_a \vec{J}_{1b} + E_{13}^2 \sum_{ab} \vec{R}_{2ab} \vec{\nabla}_a \vec{J}_{3b} \]

+ \[D_{31}^4 \sum_{ab} \vec{R}_{4ab} \vec{\nabla}_a \vec{J}_{1b} \]

+ \[E_{31}^2 \sum_{ab} \vec{R}_{2ab} \vec{\nabla}_a \vec{\nabla}_b (\vec{\nabla} \cdot \vec{J}_1). \]

The energy densities above are given in terms of 50 coupling constants \(C_{mn}^n, D_{mn}^n, E_{mn}^n, \) and \(F_{mn}^n. \)

B.G. Carlsson et al., C 78, 044326 (2008)
Power Counting in Skyrme and RMF Functionals

Can we control the explosion of terms in generalized functionals?

- Old chiral NDA analysis: [Friar et al., rjf et al.]

\[c \left[\frac{\psi^\dagger \psi}{f_\pi^2 \Lambda} \right]^l \left[\frac{\nabla}{\Lambda} \right]^n f_\pi^2 \Lambda^2 \]

\[\rho \longleftrightarrow \psi^\dagger \psi \]

\[\tau \longleftrightarrow \nabla \psi^\dagger \cdot \nabla \psi \]

\[J \longleftrightarrow \psi^\dagger \nabla \psi \]

- Density expansion?

\[\frac{1}{7} \leq \frac{\rho_0}{f_\pi^2 \Lambda} \leq \frac{1}{4} \]

for \(1000 \leq \Lambda \leq 500 \)

- Also gradient expansion

\[\varepsilon_0 \]

\[k_F = 1.35 \text{ fm}^{-1} \]

[Diagrams and plots showing energy per particle (MeV) vs. power of density, with data points for natural (\(\Lambda = 600 \text{ MeV} \)), Skyrme \(\rho^n \), RMFT-II \(\rho^n \) net, and RMFT-I \(\rho^n \) net.]

\[e_0 \text{ natural (} L = 600 \text{ MeV) } \]

Skyrme \(\rho^n \)

RMFT-II \(\rho^n \) net

RMFT-I \(\rho^n \) net

\[k_F = 1.35 \text{ fm}^{-1} \]
Naturalness revisited (M. Kortelainen et al.)

- Apply natural units scaling to 48 Skyrme functionals
- Look for optimal Λ by deviations from unity:

$\Lambda \approx 600$ MeV consistent with previous analysis

What can we use this for?
Signatures of incomplete optimization

\(\Lambda = 687 \text{ MeV}, \text{ iv. scaled} \)

- Unnaturally small \(C^\Delta_1 \rho \) in RATP, SkMP; \(C^T_0 \) in SkX
- Unnaturally large \(C^\Delta_1 \rho \) in SKI1; \(C^T_0 \) in SkX
- Guide for future fitting attempts with generalized EDF’s
Quantified constraints from new observables

- Do new observables bring new information to an EDF?
- Example: What is the information content of the neutron skin?
- Pearson product-moment correlation coefficient

\[c_{AB} = \frac{\Delta A \Delta B}{\sqrt{\Delta A^2 \Delta B^2}} = \begin{cases} 1 & \text{full alignment/correlation} \\ 0 & \text{not aligned/statistically independent} \end{cases} \]

where \(A \) and \(B \) are two observables.

- Fit EDF couplings \(\mathbf{p} = \{p_1, \ldots, p_F\} \) with a \(\chi^2(\mathbf{p}) \) function

- Find uncertainties and correlation from curvature about minimum, \(\mathcal{M}_{ij} = \partial_{p_i} \partial_{p_j} \chi^2|_{\mathbf{p}_0} \) with \(\chi^2(\mathbf{p}_0) = \chi^2_{\text{min}} \):

\[
\overline{\Delta A^2} = \sum_{ij} \partial_{p_i} A(\hat{\mathcal{M}}^{-1})_{ij} \partial_{p_j} A|_{\mathbf{p}_0} \quad \text{and} \quad \overline{\Delta A \Delta B} = \sum_{ij} \partial_{p_i} A(\hat{\mathcal{M}}^{-1})_{ij} \partial_{p_j} B|_{\mathbf{p}_0}
\]

Filled areas are regions of parameter reasonable domain p (where $\chi^2 = \chi^2_{\text{min}} + 1$)

- left: dipole polarizability and neutron skin in ^{208}Pb
- right: m^*/m in nuclear matter and neutron skin in ^{208}Pb
Correlation with observables

- **Left:** Neutron form factor $F_n(q = 0.45\text{ fm}^{-1})$ in ^{208}Pb
- **Right:** Binding energy of heavy neutron-rich nucleus ^{148}Sn
Impact of precise measurement of neutron skin

- Original EDF is SV-min from P. Klüpfel et al.
- New EDF SV-min-R_n by adding neutron radius in 208Pb with adopted error 0.02 fm to fit observables
- Uncertainties for isovector indicators shrink by factor of 2
Effects of Time-odd Fields of EDF

- $N = 14$ full spherical shells ($Ns = 680$ states)
- Full HFB calculations, including all time-odd terms, in 24 different configurations for 91 nuclei of the rare earth
- 3 different Skyrme interactions, SkP, SIII, SLy4

Effect of orientation on time-odd terms
Effects of Time-odd Fields of EDF

- N = 14 full spherical shells (Ns = 680 states)
- Full HFB calculations, including all time-odd terms, in 24 different configurations for 91 nuclei of the rare earth
- 3 different Skyrme interactions, SkP, SIII, SLy4

Every point in the histograms: one of 12 000 fully self-consistent symmetry-breaking DFT calculation (Jaguar XT5)

Effect of orientation on time-odd terms
Odd-proton States in Mass A~150

One quasi-particle states in Ho isotopes with 3 different Skyrme interactions. All time-odd fields included as originally prescribed by each interaction.
Odd-proton States in Mass A~150

Every point in the figure: one of 12 000 fully self-consistent symmetry-breaking DFT calculation (Jaguar XT5)

One quasi-particle states in Ho isotopes with 3 different Skyrme interactions. All time-odd fields included as originally prescribed by each interaction.
Finite-size spin instabilities

T. Lesinski, N. Schunck, M. Kortelainen, T. Duguet

- Response of the nucleus to a perturbation with finite momentum \(q \) studied in the RPA theory
 \[
 Q^{(\alpha)} = e^{-i\omega t} \sum_a e^{i q \cdot r_a} \Theta^{(\alpha)}_a
 \]

- Channels: scalar-isoscalar, scalar-isovector, vector-isoscalar, vector-isovector, etc.

Every point: Convergence rate of the HFB calculation over 100 blocked states in \(^{157-165}\)Ba, 10 500 points total (NERSC Franklin XT4)

Contributions of different channels of the Skyrme functional to the total energy as function of iterations for the [521]3/2 blocked state in \(^{157}\)Ba with the SLy5 force.
Novel optimization algorithms (ANL + ORNL)

- Computational cost of optimization is high because some nuclei can take hours to compute (so restrict to spherical)
- New model-based optimization: minimize local approximation to exact function

- POUNDerS algorithm greatly outperforms conventional method
- Opens the door to EDF optimization with non-spherical nuclei
Novel optimization algorithms: Test case

- left: Deviation between theoretical and experimental nuclear masses for the SLy4 Skyrme EDF using HFBTHO solver
- right: Same for UNEDFpre EDF parametrization
- Close to conventional Skyrme accuracy limit
Theoretical error bars from statistical analysis

- EDF analyzed using surrogate (model-based) approach
- Method is highly scalable (e.g., > 5000 cores on Franklin)

- Left: Sensitivity of each parameter to global changes in data
- Right: Global sensitivity to specific data changes by 0.1σ

- Standard parametrization is highly correlated \implies ideal is N independent parameters unambiguously constrained by data
Nuclear constrained calculations: GCM

- SLY6 + density-dependent pairing
- There are no adjustable parameters...

Nuclear constrained calculations:
Deformation energy surface
Quadratic constraint procedure often fails to deliver requested average value of constrained operator with acceptable accuracy.

Augmented Lagrangian Method (ALM) has a linear constraint and a quadratic penalty function \Rightarrow proper convergence.
Request solutions at grid points of deformation lattice

Standard quadratic constraint method fails; ALM succeeds!
Outline

Overview: EDF’s and DFT

The UNEDF project

New developments: Constraints, optimization, …

Non-empirical EDF’s and ab-initio DFT

Summary
Historically: Microscopic EDF from G-Matrix

- G-matrix softens highly non-perturbative NN potentials
- Negele/Vautherin density matrix expansion (DME) → Skyrme-like EDF from G-matrix for Hartree-Fock
 - Semi-quantitatively successful
 - Empirical fits far superior → little further development
- Ab-initio DFT is possible from many-body perturbation theory (MBPT) if convergent and can tune single-particle potential U

$$H = \underbrace{(T + U)}_{\text{Kohn–Sham}} + (V - U)$$

- Need to be able to adjust U so density unchanged
- Recent successes for Coulomb DFT
- But MBPT with G-matrix doesn’t work (hole-line expansion)
- New development: low-momentum potentials ($V_{\text{low } k}, V_{\text{SRG}}$)
 - revisit hole-line expansion
Compare Potential and G Matrix: AV18 vs. V_{SRG}

AV18

V_{SRG}

3S1 bare potential

3S1 SRG potential

3S1 bare G Matrix, $E=-207.4$

3S1 SRG G Matrix, $E=-207.4$

G Matrices
Hole-Line Expansion Revisited (Bethe, Day, ...)

- Consider ratio of fourth-order diagrams to third-order:

 \[
 \frac{\text{fourth-order}}{\text{third-order}}
 \]

 - "Conventional" G matrix still couples low-k and high-k
 - no new hole line \implies ratio $\approx -\chi(r = 0) \approx -1 \implies$ sum all orders
 - add a hole line \implies ratio $\approx \sum_{n \leq k_F} \langle bn | (1/e) G | bn \rangle \approx \kappa \approx 0.15$

- Low-momentum potentials decouple low-k and high-k
 - add a hole line \implies still suppressed
 - no new hole line \implies also suppressed (limited phase space)
 - freedom to choose single-particle U \implies use for Kohn-Sham

 \implies Ab initio MBPT and DFT can work!

- (How do we get a Kohn-Sham $V_{KS}(x)$ from even HF diagrams?)
What is needed for ab initio Kohn-Sham DFT?

1. Need MBPT to work with tuned U \[H = (T + U) + (V - U) \]

(see new results from K. Hebeler et al.)

If convergence insensitive to $U \Rightarrow$ choose so KS density exact

2. Need to calculate $V_{\text{KS}}(x)$ from $\delta E[\rho]/\delta \rho(x)$, etc. but diagrams depend non-locally on KS orbitals

- Density matrix expansion (DME) \Rightarrow explicit densities
- Use chain rule \Rightarrow “optimized effective potential” (OEP)
Density matrix expansion revisited [Negele/Vautherin]

- Dominant MBPT contributions can be put into form

\[\langle V \rangle \sim \int d\mathbf{R} \, dr_{12} \, dr_{34} \, \rho(r_1, r_3)K(r_{12}, r_{34})\rho(r_2, r_4) \]

- finite range and non-local resummed vertices \(K \) (+ NNN)
Density matrix expansion revisited \[\text{[Negele/Vautherin]}\]

- Dominant MBPT contributions can be put into form

\[
\langle V \rangle \sim \int d\mathbf{R} d\mathbf{r}_{12} d\mathbf{r}_{34} \rho(\mathbf{r}_1, \mathbf{r}_3) K(\mathbf{r}_{12}, \mathbf{r}_{34}) \rho(\mathbf{r}_2, \mathbf{r}_4)
\]

- finite range and non-local resummed vertices \(K (+ \text{NNN}) \)
- DME: Expand KS \(\rho \) in local operators w/ factorized non-locality

\[
\rho(\mathbf{r}_1, \mathbf{r}_2) = \sum_{\epsilon_{\alpha} \leq \epsilon_F} \psi_{\alpha}^\dagger(\mathbf{r}_1) \psi_{\alpha}(\mathbf{r}_2) = \sum_n \Pi_n(\mathbf{r}) \langle O_n(\mathbf{R}) \rangle
\]

with \(\langle O_n(\mathbf{R}) \rangle = \{ \rho(\mathbf{R}), \nabla^2 \rho(\mathbf{R}), \tau(\mathbf{R}), \cdots \} \) maps \(\langle V \rangle \) to Skyrme-like EDF!

- Adds density dependences, isovector, \ldots missing in Skyrme
Density matrix expansion revisited [Negele/Vautherin]

- Dominant MBPT contributions can be put into form

\[
\langle V \rangle \sim \int dR \, dr_{12} \, dr_{34} \, \rho(r_1, r_3)K(r_{12}, r_{34})\rho(r_2, r_4)
\]

- finite range and non-local resummed vertices \(K (+ \text{NNN}) \)
- DME: Expand KS \(\rho \) in local operators w/factorized non-locality

\[
\rho(r_1, r_2) = \sum_{\epsilon_\alpha \leq \epsilon_F} \psi_\alpha^\dagger(r_1)\psi_\alpha(r_2) = \sum_n \Pi_n(r)\langle \mathcal{O}_n(R) \rangle
\]

with \(\langle \mathcal{O}_n(R) \rangle = \{ \rho(R), \nabla^2 \rho(R), \tau(R), \cdots \} \) maps \(\langle V \rangle \) to Skyrme-like EDF!

- Adds density dependences, isovector, \ldots missing in Skyrme
- Original DME expands about nuclear matter (\(k \)-space + NNN)

\[
\rho(R+r/2, R-r/2) \approx \frac{3j_1(sk_F)}{sk_F} \rho(R) + \frac{35j_3(sk_F)}{2sk_F^3} \left(\frac{1}{4} \nabla^2 \rho(R) - \tau(R) + \frac{3}{5} k_F^2 \rho(R) + \cdots \right)
\]
Adaptation to Skyrme HFB Implementations

\[E_{\text{Skyrme}} = \frac{\tau}{2M} + \frac{3}{8} t_0 \rho^2 + \frac{1}{16} t_3 \rho^{2+\alpha} + \frac{1}{16} (3t_1 + 5t_2) \rho \tau + \frac{1}{64} (9t_1 - 5t_2) |\nabla \rho|^2 + \cdots \]

\[\implies E_{\text{DME}} = \frac{\tau}{2M} + A[\rho] + B[\rho] \tau + C[\rho] |\nabla \rho|^2 + \cdots \]

Kohn–Sham Potentials

Skyrme energy functional

\[t_0, t_1, t_2, \ldots \]

Orbitals and Occupation #’s

HFB solver

\[V_{\text{KS}}(r) = \frac{\delta E_{\text{int}}[\rho]}{\delta \rho(r)} \iff \left[-\frac{\nabla^2}{2m} + V_{\text{KS}}(x) \right] \psi_\alpha = \varepsilon_\alpha \psi_\alpha \implies \rho(x) = \sum_\alpha n_\alpha |\psi_\alpha(x)|^2 \]
Adaptation to Skyrme HFB Implementations

\[\mathcal{E}_{\text{Skyrme}} = \frac{\tau}{2M} + \frac{3}{8} t_0 \rho^2 + \frac{1}{16} t_3 \rho^{2+\alpha} + \frac{1}{16} (3t_1 + 5t_2) \rho \tau + \frac{1}{64} (9t_1 - 5t_2) |\nabla \rho|^2 + \ldots \]

\[\Rightarrow \mathcal{E}_{\text{DME}} = \frac{\tau}{2M} + A[\rho] + B[\rho] \tau + C[\rho] |\nabla \rho|^2 + \ldots \]

Kohn–Sham Potentials

\[V_{\text{KS}}(r) = \frac{\delta E_{\text{int}}[\rho]}{\delta \rho(r)} \iff [-\frac{\nabla^2}{2m} + V_{\text{KS}}(x)] \psi_\alpha = \varepsilon_\alpha \psi_\alpha \Rightarrow \rho(x) = \sum_\alpha n_\alpha |\psi_\alpha(x)|^2 \]
Adaptation to Skyrme HFB Implementations

\[\mathcal{E}_{\text{Skyrme}} = \frac{\tau}{2M} + \frac{3}{8} t_0 \rho^2 + \frac{1}{16} t_3 \rho^{2+\alpha} + \frac{1}{16} (3t_1 + 5t_2) \rho \tau + \frac{1}{64} (9t_1 - 5t_2) |\nabla \rho|^2 + \cdots \]

\[\implies \mathcal{E}_{\text{DME}} = \frac{\tau}{2M} + A[\rho] + B[\rho] \tau + C[\rho] |\nabla \rho|^2 + \cdots \]

Kohn–Sham Potentials

Orbital dependent functional
Solve OPM

HFB solver

Orbitals and Occupation #’s

\[V_{\text{KS}}(r) = \frac{\delta E_{\text{int}}[\rho]}{\delta \rho(r)} \iff [-\frac{\nabla^2}{2m} + V_{\text{KS}}(x)] \psi_\alpha = \varepsilon_\alpha \psi_\alpha \implies \rho(x) = \sum_\alpha n_\alpha |\psi_\alpha(x)|^2 \]
Improved DME for pion exchange [Gebremariam et al.]

- Phase-space averaging for finite nuclei (symmetries, sum rules)
- Focus on long-range interactions \rightarrow pion exchange in NN and NNN from chiral effective field theory (χEFT)
- Tests are very promising [arXiv:0910.4979]:

See Scott Bogner’s talk!
Long-range chiral EFT

\[\Rightarrow \text{enhanced Skyrme} \]

- Add long-range (\(\pi\)-exchange) contributions in the density matrix expansion (DME)
 - NN/NNN through \(N^2\text{LO}\) [Gebremariam et al.]
- Refit Skyrme parameters for short-range parts
- Test for sensitivities and improved observables (e.g., isotope chains) [ORNL]
- Spin-orbit couplings from \(2\pi 3\text{NF}\) particularly interesting
- Can we “see” the pion in medium to heavy nuclei?
Non-empirical pairing gaps from $V_{\text{low } k}$ [Duguet et al.]

- Use Skyrme for particle-hole functional and $V_{\text{low } k}$ for pairing
- Leading order and doesn't include NNN, but very promising!

See Scott Bogner’s talk!
Orbital Dependent DFT (OEP, OPM, . . .) [J. Drut, L. Platter, rjf]

- Construct MBPT for $E_{\text{int}}[\rho, \tau, J, \ldots]$; densities are sums over orbitals solving from Kohn-Sham S-eqn with $V_{\text{KS}}(r), \ldots$

- Self-consistency $\implies V_{\text{KS}}(r) = \delta E_{\text{int}}[\rho, \ldots]/\delta \rho(r), \ldots$

 - i.e., Kohn-Sham potential is functional derivative of interacting energy functional (or E_{xc}) wrt (all) densities

- How do we calculate this functional derivative?

- Approximations with explicit $\rho(r)$ dependence: LDA, DME, . . .
Orbital Dependent DFT (OEP, OPM, ...) [J. Drut, L. Platter, rjf]

- Construct MBPT for $E_{\text{int}}[\rho, \tau, J, \ldots]$; densities are sums over orbitals solving from Kohn-Sham S-eqn with $V_{\text{KS}}(r), \ldots$

- Self-consistency $\implies V_{\text{KS}}(r) = \delta E_{\text{int}}[\rho, \ldots]/\delta \rho(r), \ldots$
 - i.e., Kohn-Sham potential is functional derivative of interacting energy functional (or E_{xc}) wrt (all) densities

- How do we calculate this functional derivative?

- Approximations with explicit $\rho(r)$ dependence: LDA, DME, ...

- Orbital-dependent DFT \implies full derivative via chain rule:

\[
V_{\text{KS}}(r) = \frac{\delta E_{\text{int}}[\phi_\alpha, \varepsilon_\alpha]}{\delta \rho(r)} = \int dr' \frac{\delta V_{\text{KS}}(r')}{\delta \rho(r)} \sum_\alpha \left\{ \int dr'' \left[\frac{\delta \phi_\alpha^\dagger(r'')}{\delta V_{\text{KS}}(r')} \frac{\delta E_{\text{int}}}{\delta \phi_\alpha^\dagger(r'')} + \text{c.c.} \right] + \frac{\delta \varepsilon_\alpha}{\delta V_{\text{KS}}(r')} \frac{\partial E_{\text{int}}}{\partial \varepsilon_\alpha} \right\}
\]

- Solve the OPM equation for V_{KS} using $\chi_s(r, r') = \delta \rho(r)/\delta V_{\text{KS}}(r')$

\[
\int d^3 r' \chi_s(r, r') V_{\text{KS}}(r') = \Lambda_{\text{xc}}(r)
\]

- $\Lambda_{\text{xc}}(r)$ is functional of the orbitals ϕ_α, eigenvalues ε_α, and G_{KS}^0
Outline

Overview: EDF’s and DFT

The UNEDF project

New developments: Constraints, optimization, . . .

Non-empirical EDF’s and ab-initio DFT

Summary
Multi-pronged effort to improve nuclear EDF’s

Worldwide collaborative effort: **UNEDF + FIDIPRO + ...**
- SciDAC model is effective

Strategies
- Extend existing functionals following EFT principles and using sophisticated correlation analyses
- Constrain with new data and accurate microscopic calculations (e.g., trapped neutron drops using GFMC/AFMC and NCFC)
- Develop ab initio functionals using low-momentum interactions
 - Many-body perturbative expansions possible
 - Long-distance chiral physics (EFT expansion)
 - Density matrix expansion (DME) or full orbital-based OEP

Expect many developments in the coming years!
(Some) issues for nuclear DFT to be addressed

- DFT for self-bound systems
 - Does DFT even exist? (HK theorem for intrinsic states?)
 - Effective actions: symmetry breaking and zero modes
- Game plans proposed:
 - T. Duguet et al.: “multi-reference” projection methods
 - B. Giraud et al.: use harmonic oscillator trap
 - J. Engel, J. Messud et al.: find intrinsic functional
 - J. Braun et al.: deal with zero modes using Fadeev-Popov or BRST methods
- What about single-particle spectra?
 - R. Bartlett: good reproduction for Coulomb systems
 - Connect to Green’s function formulation?
- How to best deal with long-range correlations?
- What about alternative functionals? (e.g., T. Papenbrock)
“And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of it reached to heaven . . .” [Genesis 28:12]

Jacob’s Ladder: Coulomb DFT [J. Perdew et al.]

HEAVEN \rightarrow Chemical Accuracy

5. Full orbital-based DFT from MBPT$^+$. [E.g., RPA with Kohn-Sham orbitals.]

4. Hyper-GGA includes exact exchange energy density calculated with (occupied) orbitals.

3. Meta-GGA adds (some subset of) $\nabla^2 \rho_{\uparrow}(\mathbf{r})$, $\nabla^2 \rho_{\downarrow}(\mathbf{r})$, $\tau_{\uparrow}(\mathbf{r})$, and $\tau_{\downarrow}(\mathbf{r})$. [Note: $\tau[\rho]$ is nonlocal; $\tau[\phi_{\text{KS}}]$ is semi-local.]

2. Generalized gradient approximation (GGA) adds $\nabla \rho_{\uparrow}(\mathbf{r})$ and $\nabla \rho_{\downarrow}(\mathbf{r})$.

1. Local spin density approximation (LSDA) with $\rho_{\uparrow}(\mathbf{r})$ and $\rho_{\downarrow}(\mathbf{r})$ as ingredients.
Jacob’s Ladder: Nuclear DFT [arXiv:0906.1463]

“And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of it reached to heaven . . . ” [Genesis 28:12]

HEAVEN \implies UNEDF from NN· · · N (QCD)

5. Full orbital-based DFT based on
 [lattice QCD \implies] chiral EFT \implies $V_{\text{low }k}$.

4. Complete semi-local functional (e.g., DME) from chiral EFT \implies $V_{\text{low }k}$.

3. Long-range chiral NN and NNN \implies Π–DME \implies merged with Skyrme and refit.

2. Generalized Skyrme with $\nabla^n \rho(r)$, $\rho^\alpha(r)$, . . . with constraints (e.g., neutron drops)

1. Conventional Skyrme EDF’s [e.g. SLY4].

○ Developing 2.–5. in parallel!
Spontaneous fission: Energy surfaces from DFT

A. Staszczak et al.,
PRC 80, 014309 (2009)

A promising starting point for an extreme scale challenge!
Microscopic description of nuclear fission

Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society.

- The nuclear many-body problem is difficult
- Much of the progress in fission theory has been based on phenomenological models
 - This limits our predictive capability
 - ... and makes it difficult to estimate the uncertainties

There are fundamental problems in fission that cry to be solved. Success will impact:
- Basic science (nuclear structure and astrophysics)
- Societal applications (energy, defense, environment)

Fission is a perfect problem for extreme scale computing

We are developing a *microscopic* model for fission that will be predictive and extendable. The figures show progress:
- Calculating pathways and half-lives
- Greatly improving calculation speed