Coupled-channels Calculations of Heavy-ion Fusion Reactions

Henning Esbensen
Argonne National Laboratory, Argonne, Illinois, USA

• The goal is to develop a coupled-channels description that can explain phenomena observed in heavy-ion fusion reactions, e.g.,
 a) large enhancement at energies below the CB (Coulomb barrier),
 b) hindrance of fusion at extreme sub-barrier energies,
 c) suppression of fusion data far above the CB.

• The description should include couplings to
 a) low-lying 2^+ and 3^- states, mutual and two-phonon exc.,
 b) excitations of rotational states (if deformed),
 c) transfer channels: $1n$, $2n$, $1p$, $2p$, α (if necessary.)

Work supported by U.S. Department of Energy,
Office of Nuclear Physics
• Such couplings usually explain the enhancement below the CB.

$^{64}\text{Ni} + ^{64}\text{Ni}$ by Jiang et al., PRL 93, 012701 (2004).

• In the 1970s fusion cross sections were measured at energies above the Coulomb barrier. Once you overcome a barrier you are trapped.

• Since the 1980s cross sections down to 0.1 mb were measured. Large enhancements observed. Coupled-channels calculations were developed. Once you have penetrated the barrier you are trapped.

• Since 2001 cross sections have been measured down to 10 nb. Large hindrance compared to coupled-channels calculations. Calculations are sensitive to the ion-ion potential in the interior.

• Coupled-channels calculations must be based on a realistic ion-ion potential, with a realistic pocket above the Compound Nucleus GS.

• The calculations should explain the hindrance far below the CB, and help explain the suppression far above the CB.

• EXAMPLES: 64Ni+64Ni, 16O+208Pb, 16O+16O.
Proximity type Woods-Saxon (WS) potential

\[U(r) = \frac{-16\pi \gamma a R_{aA}}{1 + \exp\left[(r - R_a - R_A)/a\right]}, \]

where \(\gamma \) is the nuclear surface tension and \(a \approx 0.6 - 0.7 \text{ fm} \).

It is realistic for large values of \(r \), where it is consistent with elastic scattering data (Rex-Winther) and with double-folding potentials (Akyüür-Winther). It provides a good description of the height of the Coulomb barrier and of fusion data with \(\sigma_f \geq 0.1 \text{ mb} \).

The force has the correct liquid drop form for touching spheres:

\[F = -4\pi \gamma R_{aA}, \text{ where } R_{aA} = \frac{R_a R_A}{R_a + R_A}. \]

This type of potential has been very useful in the past. However, it is not realistic for overlapping nuclei.
Coupled-channels formalism.

Expand total wave function on channel-spin wave functions,

\[\Psi_{JM} = \sum_{nIL} \frac{\psi_{nIL}(r)}{r} |n(IL)JM\rangle. \]

Channel-spin wave functions

\[|n(IL)JM\rangle = \sum_{M_L M_I} \langle LM_L, IM_I |JM\rangle |LM_L\rangle |nIM_I\rangle. \]

\[|L, M_L\rangle \text{ orbital angular momentum,} \]
\[|nIM_I\rangle \text{ excited state of projectile or target,} \]
\[|J, M\rangle \text{ total spin, which is conserved.} \]

Coupled equations:

\[(h_L + \epsilon_{nI} - E) \psi_{nIL}(r) = \]

\[- \sum_{n'I'L'} \langle n(IL)JM|V_{int}|n'(I'L')JM\rangle \psi_{n'I'L'}(r). \]

\(I + 1 \) channels for each state: \(L' = |L - I|, \ldots, L + I \). \text{ TOO MANY!}
Rotating frame approximation.

- Assumes that the orbital angular momentum L is conserved (also known as the Iso-centrifugal approximation.)

- Then one can diagonalized the interaction matrix in such a way that there is only one channel for each excited state (nI) instead of $I + 1$ channels, namely, the state $|nIM\rangle$, where M is conserved.

- For fixed L solve the coupled equations:

$$ (h_L + \epsilon_{nI} - E) \psi_{nI}(r) = - \sum_{n'I'} \langle nI|V_{int}|n'I'\rangle \psi_{n'I'}(r). $$

Good approximation for fusion; not so good for angular distributions of Coulomb excitation and transfer reactions at forward angles.
Example: Quadrupole excitations.

- Consider quadrupole excitations.

- The full problem has \(\sum (I + 1) = 33 \) channels.

- In the rotating frame approximation, there is only one channel \((M=0)\) for each state, i.e., we only need \(\sum 1 = 10 \) channels.

- Combine the (3) two-phonon and the (5) three-phonon states into one effective two-phonon and three-phonon state, respectively. Only 4 effective channels are needed.
Standard two-phonon calculation of fusion.

\[
\begin{array}{c|c|c|c}
2 & (2,3) & 2 \\
\hline
2^+ & 3^- & \text{Mutual} \\
\hline
\end{array}
\qquad
\begin{array}{c|c|c|c}
(3,3) & (2,3) & 2 \\
\hline
(2,2) & 3 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
2^+ & 3^- & 2 \\
\hline
\end{array}
\quad
\begin{array}{c|c|c|c}
2 & (2,3) & 3 \\
\hline
0^+ & \text{nucleus a} \\
\hline
0^+ & \text{nucleus b} \\
\hline
\end{array}
\]

\(1 \text{ (GS)} + 4 \text{ (1PH)} + 4 \text{ (2PH)} + 6 \text{ (Mutual)} = 15 \text{ channels} \)

(instead of the 138 channels of the full problem.)

This model works quite well for the fusion of not too heavy systems.

- It does not work for inelastic scattering at forward angles,
- in fusion reactions where transfer plays a role \((Q_{tr} > 0)\),
- for heavy, soft or strongly deformed nuclei (multiple excitations),
- in heavy systems where deep inelastic reactions may play a role.
Standard coupled-channels calculations.

- Include nuclear couplings up to second order in the dynamic surface displacement $\delta s = R \sum \alpha_{\lambda \mu} Y^*_{\lambda \mu}(\hat{r})$,

$$U(r, \delta s) = U_N(r) - \frac{dU_N}{dr}\delta s + \frac{1}{2} \frac{d^2U_N}{dr^2}(\delta s^2 - \langle \delta s^2 \rangle),$$

and Coulomb couplings up to first order in δs.

- Include one-phonon, two-phonon and mutual excitations of the low-lying 2^+ and 3^- states in projectile and target.

- Use scattering boundary conditions for large r,

$$\psi_{nI}(r) \to \delta_{nI,0} e^{-ik_0r} + R_{nI} e^{ik_n r}, \text{ for } r \to \infty.$$
Simulate fusion by ingoing-wave boundary conditions (IWBC),

\[\psi_n(r) \rightarrow T_n e^{-i q_n r}, \quad \text{for} \quad r \rightarrow R_{\text{pocket}}, \]

which are imposed at the minimum of the pocket.

The IWBC are sometimes supplemented with a weak, short-ranged absorption.
Double folding potentials

\[U_N(r) = \int d\mathbf{r}_1 \, d\mathbf{r}_2 \, \rho_a(\mathbf{r}_1) \, \rho_A(\mathbf{r}_2) \, v_{NN}(\mathbf{r} + \mathbf{r}_2 - \mathbf{r}_1). \]

The effective M3Y interaction produces a very realistic Coulomb barrier, consistent with the proximity type Akyüz-Winther potential. However, the potential is way too deep for overlapping nuclei.

Supplement the M3Y interaction with a repulsive contact term,

\[v_{NN}^{\text{rep}} = v_{\text{rep}} \, \delta(\mathbf{r} + \mathbf{r}_2 - \mathbf{r}_1). \]

Use a smaller diffuseness of the densities, \(a_{\text{rep}} \approx 0.3–0.4 \text{ fm} \), when calculating the repulsive potential.

Adjust the strength \(v_{\text{rep}} \) so that the total nuclear interaction for overlapping nuclei is consistent with the Equation of State,

\[U_N(r = 0) = 2A_a[\epsilon(2\rho) - \epsilon(\rho)] \approx \frac{A_a}{9} K, \]

and a nuclear incompressibility of \(K \approx 234 \text{ MeV} \).
Example: 64Ni+64Ni.

The hindrance sets in below 89 MeV. The hindrance is an entrance channel, and not a CN effect.

The shallow M3Y+Repulsion potential has been corrected for the effect of the nuclear incompressibility.
Applied to the 64Ni$+^{64}$Ni fusion data

\[S - \text{factor} = E_{\text{c.m.}} \sigma_f \exp(2\pi[\eta - \eta_0]), \text{ where } \eta = \frac{Z_1Z_2e^2}{\hbar\nu}. \]

The IWBC imply that $\sigma_f = 0$, for $E < V_{\text{pocket}} = 85.4 \text{ MeV}$.
Average spin for fusion from γ-ray multiplicities. Ackerman et al., NPA 609, 91 (1996).

The WS potential predicts a constant average spin at low energy. The (CC) M3Y+repulsion calculation predicts a vanishing spin at LE. Mišicu and Esbensen, PRC 75, 034606 (2007).
The M3Y+repulsion explains qualitatively the suppression that has been observed (for some systems) at high energies.
Signs of a fusion hindrance have been observed in many systems: $^{90}\text{Zr}+^{89}\text{Y}$, $^{90,92}\text{Zr}$, $^{28}\text{Si}+^{30}\text{Si}$, $^{28}\text{Si}+^{64}\text{Ni}$, $^{58}\text{Ni}+^{58}\text{Ni}$, $^{64}\text{Ni}+^{64}\text{Ni}$, $^{32}\text{S}+^{89}\text{Y}$, $^{48}\text{Ca}+^{96}\text{Zr}$, $^{60}\text{Ni}+^{89}\text{Y}$, $^{64}\text{Ni}+^{100}\text{Mo}$, $^{16}\text{O}+^{208}\text{Pb}$.

The M3Y+rep potential has a minimum pocket energy of $V_{pocket} = 86.2$ MeV. A maximum S factor barely reached.

New data (solid points), Dasgupta et al., PRL 99, 192701 (2007), confirm the fusion hindrance. The WS potential is too deep and cannot explain the fusion hindrance.

A shallow pocket, a thicker barrier, and couplings to the ($^{16}\text{O},^{17}\text{O}$) transfer explain the data much better, HE&SM, PRC 76, 054609 (2007).
The M3Y+repulsion potential has a pocket at 65.1 MeV.

Green curve: one-neutron transfer strength was multiplied by 1.26.
This strength produces a realistic total reaction cross section.
Suppression of $^{16}\text{O}+^{208}\text{Pb}$ fusion far above the CB.

The high energy data are suppressed compared to calculations based on the WS potential. The problem can be fixed by using a large diffuseness, Newton, PLB 586, 219 (2004). Calculations based on the M3Y+repulsion potential and a weak, short-range absorption (SRAbs) reproduce the data.
$^{16}\text{O}^{16}\text{O}$ fusion data, Thomas et al., PRC 33, 1679 (1986).

Red curve: best fit to all data points, HE, PRC 77, 054608 (2008).

Diamond: Adiabatic TDHF calc. by P.G.Reinhard et al.

Green: Best fit to 7 lowest points; is consistent with Jiang’s extrapolation (black curve.)
Evidence for a shallow pocket in the fusion of $^{16}\text{O}+^{16}\text{O}$.

Vary a_{rep}, adjust v_{rep} so $K=234$ MeV.
The best fit to Thomas’s data is obtained for $a_{\text{rep}} = 0.41$ fm...
$^{16}\text{O}^{+^{16}}\text{O}$ high energy fusion.

Diamonds data by Tserruya et al. (1978).

Kolata et al. (1977) saw similar structures.

Are also been seen in $^{12}\text{C}^{+^{12}}\text{C}$ fusion.

Blue dashed curve: based on conventional Woods-Saxon well.

Red curve: the M3Y+rep calculation that fits the Thomas data. The high energy data prefer a shallow pocket. Consistent with elastic scattering analysis by Gobbi et al. PRC 7, 30 (1973).
Conclusion

• The hindrance of fusion far below the Coulomb barrier is a general phenomenon, which has been observed in many heavy-ion systems.

• It is explained by (a posteriori) coupled-channels calculations that are based on IWBC and a shallow potential in the entrance channel.

• A shallow potential also helps resolve the problem of a suppression of high energy fusion data and explains the structures observed in the high energy 16O+16O fusion and scattering data.

• A short-range imaginary potential is often needed at high energies to simulate the effect of the many channels that open up.

• Going beyond the Rotating Frame Approximation would be a computational challenge and require a large number of channels.
Open questions

• Expand experimental and theoretical studies to lighter systems. **WILL THE HINDRANCE PERSIST**, and how will it affect the extrapolation to astrophysical reaction rates? (Gasques et al., PRC 76, 035802, 2007).

• What is the relation to molecular resonances (Bromley et al.)?

• What is the relation to TDHF calculations (Oberacker and Umar)?

• How does the hindrance affect the production of heavy elements?

• How to model the dynamics all the way to the compound nucleus? (Ichikawa et al., PRC 75, 057603 (2007)).
Future directions

• Study more reactions of interest to astrophysics.
• Study the competition between breakup, complete and incomplete fusion of weakly bound nuclei.
• Apply CDCC calculations to deal with states in the continuum.
• A good starting point is 9Be. It has several advantages:
 it is weakly bound, $Q(\alpha + \alpha + n) = -1.574$ MeV, with only one (borromean) bound state. It is stable (strong beams).
 Many experiments have already been performed.
^9Be is strongly deformed, $Q_0 = 26.5 \ (15) \ \text{fm}^2$.

$$\rho(r, \theta') = C \frac{1 + \cosh(R(\theta')/a)}{\cosh(r/a) + \cosh(R(\theta')/a)}, \quad R(\theta') = R_0(1 + \beta_2 Y_{20}(\theta')).$$

θ' is the angle between \mathbf{r} and the symmetry axis. Calibrate the density to give the correct RMS charge radius and quadrupole moment Q_0.

This is achieved for $R_0=2.08$, $a=0.375 \ \text{fm}$, and $\beta_2 = 1.18$.
Coupled Eqs. for excitations of the Ground State rotational band of ^9Be.

Spins: $I^\pi = 3/2^-, 5/2^-$ and $7/2^-$, exc. energies 0.0, 2.43 and 6.38 MeV.

The decay of the $7/2^-$ state, $\Gamma(7/2^-) = 1.21$ MeV, is included as an absorption. It may lead to incomplete fusion (ICF).

Coupled equations:

$$\left[\frac{\hbar^2}{2\mu} \left(-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} \right) + U_0(r) + E_I - i\Gamma_I/2 - E_{cm} \right] \psi_{IM}(r)$$

$$= - \sum_{\lambda>0} \sum_{I'} \langle K IM | P_\lambda(\cos(\theta')) | K I'M \rangle U_\lambda(r) \psi_{I'M}(r).$$

Esbensen, PRC 81, 034606 (2010).
K=3/2 Ground State channel potentials and the complete fusion (CF) of ^9Be and ^{144}Sm.

Fusion through the tip ($m=3/2$) dominates at low energy. Fusion through the belly ($m=1/2$) is hindered at low energy.
Complete (CF) and incomplete (ICF) fusion of 9Be and 144Sm, Gomes et al., PRC 73, 064606 (2006).

Figure (A)

- 9Be on 144Sm
- CF and ICF graphs

Figure (B)

- TF, CF, ICF graphs
- σ_f vs. $E_{c.m.}$ (MeV)

CF reproduced by IWBC. ICF reproduced by the decay.
Complete (CF) and incomplete (ICF) fusion of 9Be and 208Pb, Dasgupta et al., PRC 73, 024606 (2004).

CF data are suppressed by 20%. The decay explains only 1/3 of ICF.
Include a weak absorption in addition to decay,
\[W(r) = \frac{-i \; 0.35 \text{ MeV}}{1 + \exp((r - 11.5)/0.4)}. \]

One-neutron transfer is the most likely reaction mechanism responsible for the breakup and ICF of ^9Be, Rafiei et al., incl. Diaz-Torres, PRC 81, 024601 (20101).