Lecture 4: A sample of Hybrid Monte Carlo

Bálint Joó
Scientific Computing Group
Jefferson Lab
Goals

• We're going to write a Hybrid Monte Carlo Code
 – For Wilson Gauge Action + 2 Flavours of Unpreconditioned Wilson Fermions
• We'll work out a C++ class structure for Fields. HMC, MD integrators
 – Gauge action and 2 Flavor Fermion Action force terms
• Warning:
 – This will be a long lecture.
 – I will focus on the class design, and skip over simple implementation methods where appropriate.
Getting the Code

• We’ll be working with the code in example3/
• Remember, you need to change the CONFIG variable in Makefile and lib/Makefile
• make qcd will make the QCD HMC example
• make sho will make the HMC for a Harmonic Oscillator
• The classes discussed in this tutorial mostly live in lib/ in header files.
 – abs_xxxx.* Abstract Classes (AbsIntegrator etc)
 – qcd_xxx.* QCD Classes
 – sho_xxx.* SHO Classes
The Basic Hybrid Monte Carlo Game:

1) Start off with a state: \((p, q) \)
2) Refresh any pseudofermion fields in your Hamiltonian
3) Refresh the momenta
4) Save the state
5) Perform a Molecular Dynamics Trajectory (MD) of length \(t \)

\[
(p, q) \xrightarrow{\text{MD}(\tau)} (p', q')
\]

6) Compute energy change:

\[
\delta H = H(p', q') - H(p, q)
\]

7) Accept/Reject \((p', q')\) with probability:

\[
P_{\text{acc}} = \min(1, e^{-\delta H})
\]

8) In case of rejection the new state is \((p, q)\)
9) Go to step 1
The Hamiltonian

- We have our (fictitious) *Hamiltonian* (for MD) of the form:

\[H = \frac{1}{2}p^2 + S_1(q) + S_2(q) + \ldots \]

- We will refer to \(S_1(q) \), \(S_2(q) \) etc as *Monomials*
 - The sum of the monomials makes up our *Action*
- So our Hamiltonian is a collection of
 - the piece from the momenta
 - a collection of monomials
- The energy is likewise a sum of the momentum term + the sum of the actions from the monomials
- The MD force is just the sum of the forces from the monomials.
Design Issues

- We'd like a fairly generic framework
 - Just as easy to do Lattice QCD as a Simple Harmonic Oscillator
 - We'll use base classes, virtual functions, defaults & derivations to specify abstractions
 - We will use templates to cope with the variations in the types of the fields in the states
 - We will hide pseudofermion fields inside the fermionic monomials.
We already have some ideas for classes

- We will need a class to hold the state \((p,q)\)
 - Template this on the types of \(p\) and \(q\)
- We will need some classes for the monomials \(S_i(q)\)
 - To compute the action \(S_i(q)\)
 - To compute the force from \(S_i(q)\)
- We need a Hamiltonian to aggregate the monomials
- We need an integrator to do the MD
- We need an overall driver to do the rest of the HMC steps.
Abstract Classes: The Field State

```cpp
template<typename P, typename Q>
class AbsFieldState
{
public:
    // Virtual destructor
    virtual ~AbsFieldState<P,Q>() {}

    // Clone the state
    virtual AbsFieldState<P,Q>* clone(void) const = 0;

    // Read
    virtual const P& getP(void) const = 0;
    virtual const Q& getQ(void) const = 0;

    // Write
    virtual P& getP(void) = 0;
    virtual Q& getQ(void) = 0;
};
```

Templates for “momenta” and “coordinates”

Discuss this later

Returns read/only (const) references

“Accessors”

Returns writable references

“Manipulators”
Abstract Classes: The Monomials

```cpp
template<typename P, typename Q>
class AbsMonomial {
public:
    //! virtual destructor:
    virtual ~AbsMonomial() {} {}

    //! Compute Force for the system... Not specified how to actually do this
    // yet. s is the state, F is the computed force
    virtual void dsdq(P& F, const Q& s) const = 0;

    //! Compute the total action
    virtual Double S(const AbsFieldState<P,Q>& s) const = 0;

    //! Refresh pseudofermion fields if any
    virtual void refreshInternalFields(const AbsFieldState<P,Q>& field_state) = 0;
};
```

- dsdq() - force term
- S() - evaluate action
- refreshInternalFields() - stub for monomials with p.f. fields
Abstract Classes: The Hamiltonian

lib/abs_hamiltonian.h

template<typename P, typename Q>
class AbsHamiltonian
{
public:
 virtual ~AbsHamiltonian() {} // Virtual destructor

 //! get the number of monomials
 virtual int numMonomials(void) const = 0;

 //! get at a specific monomial (Read Only)
 virtual const AbsMonomial<P,Q>& getMonomial(int i) const = 0;

 //! get at a specific monomial (Read/Write)
 virtual AbsMonomial<P,Q>& getMonomial(int i) = 0;
 ...

These methods are accessors/manipulators. We haven't declared the storage yet. They'll allow defaults to work...
Abstract Classes: Hamiltonian defaults

• Aggregate Energies (still within class body...)

```cpp
virtual Double mesKE(const AbsFieldState<P,Q>& s) const {
    Double KE=norm2(s.getP());
    return KE;
}

virtual Double mesPE(const AbsFieldState<P,Q>& s) const {
    Double PE;
    PE = getMonomial(0).S(s);
    for(int i=1; i < numMonomials(); i++) { PE += getMonomial(i).S(s); }
    return PE;
}

virtual void mesE(const AbsFieldState<P,Q>& s, Double& KE, Double& PE) const {
    KE = mesKE(s);
    PE = mesPE(s);
}
```

lib/abs_hamiltonian.h
Abstract Classes: Hamiltonian Defaults

```cpp
void dsdq(P& F, const Q& s) const {
    P F_tmp;
    getMonomial(0).dsdq(F, s);
    for(int i=1; i < numMonomials(); i++) {
        (getMonomial(i)).dsdq(F_tmp, s);
        F += F_tmp;
    }
}

//! Refresh pseudofermsions (if any)
virtual void refreshInternalFields(const AbsFieldState<P, Q>& s) {
    getMonomial(0).refreshInternalFields(s);
    for(int i=1; i < numMonomials(); i++) {
        getMonomial(i).refreshInternalFields(s);
    }
}
}; // End Class AbsHamiltonian
```

Aggregate Forces

Call the field refreshment on every monomial

lib/abs_hamiltonian.h
Abstract Classes: The Integrator

• Code this up as a function object:

```cpp
template<typename P, typename Q>
class AbsIntegrator {
public:
    //! Virtual destructor
    virtual ~AbsIntegrator(void) {} 

    //! Do an integration of length n*delta tau in n steps.
    virtual void operator() (AbsFieldState<P,Q>& s, 
                                      const Real traj_length) const = 0;
};
```

Here I just define an interface! No details of the integration yet.
A Leapfrog Integrator:

template<typename P, typename Q>
class AbsLeapfrogIntegrator : public AbsIntegrator<P,Q>{
public:
 virtual ~AbsLeapfrogIntegrator(void) {} // Virtual destructor

 // operator() on next slide

 virtual int getNumSteps(void) const = 0;
protected:

 virtual void leapP(AbsFieldState<P,Q>& s, const Real dt) const =0;

 virtual void leapQ(AbsFieldState<P,Q>& s, const Real dt) const=0;
};

For use in defaults

\[p \leftarrow p + \delta \tau \ F(q) \]
\[q \leftarrow q + \delta \tau p \]

lib/abs_integrator.h
A Leapfrog Integrator

// Default Implementation
virtual void operator()(AbsFieldState<P,Q>& s,
 const Real traj_length) const {

 int n_steps = getNumSteps();
 Real dt = traj_length / Real(n_steps);
 Real dtby2 = dt / Real(2);

 leapP(s, dtby2); // First Half Step
 leapQ(s, dt); // First Full Step
 for(int i = 0; i < n_steps-1; i++) {
 leapP(s, dt);
 leapQ(s, dt);
 }
 leapP(s, dtby2); // Last Half Step
}

I have now written the Leapfrog Integrator logic for all actions and all field state combinations.

BUT : I will need to supply leapP() and leapQ() for each one.

This is an illustration of the principle of separation of concerns
A C++ Detour: References & Smart Pointers

• We can't create an instance of a class with undefined virtual functions.

 AbsFieldState<Real, Real> state;

• We could create a reference but only if we refer to something.

 SHOFieldState sho_state(p,q);
 AbsFieldState<Real, Real>& state=sho_state;

• Just creating a reference without referring to anything i.e:

 AbsFieldState<Real, Real>& state;

 - is an uninitialized reference and is defined in C++ as a programming error.
• We can dynamically create the derived state:

```cpp
AbsFieldState<Real,Real>* state;
state = new SHOFieldState(p,q);
```

– This is OK. But now, we have to remember to call `delete` when we are done with the state or we'll suffer a MEMORY LEAK.

• What we need is a “smart pointer” that
 – can wrap the pointer returned by `new`,
 – keep track of “live references” to the object pointed to
 – call `delete` when the object has no further references to it

• The `Handle<>` class provides such a reference counting smart pointer
Handle<> from Stroustrup

• The **Handle** is templated, so we can wrap any pointer with it

Handle< AbsFieldState<Real,Real> > s = new SHOState(p,q);
 – s keeps a reference count (1) that increases to 2 when we make a copy of the pointer:
 Handle< AbsFieldState<Real,Real> > s2 = s;
 – Now **s** can go out of scope. The reference count falls back to 1, so **s2** is not deleted
 – Then **s2** can go out of scope. The reference count decreases again. It reaches 0. Now **s2** is deleted:
```cpp
{ 
Handle< AbsFieldState<Real, Real> > s2;
{ 
    Handle< AbsFieldState<Real, Real> > s1 = new SHOState(p,q);
    count = 1
    s2 = s1;
    count = 2
}
} 

s1 disappears here => count = 1 state not delete-d

s2 disappears here => count = 0 => Destructor of Handle<> calls delete

Thursday, August 23, 2012
```
Final word on Smart Pointers

- Our “smart pointer” is implemented in lib/handle.h
- We use it extensively in chroma
- There are other kinds of smart pointer out there
 - eg: in the boost library.
More C++-isms: Attack of the clones!

- We can't create an abstract class, we cannot copy it either.
- What if we want to save a copy?
 - Base class defines a virtual function
    ```cpp
    virtual AbsFieldState<P,Q>* clone() = 0;
    ```
 - Inheriting class implements this e.g:
    ```cpp
    SHOFieldState* clone() { return new SHOFieldState(...); }
    ```
 - Then we can call the `clone()` function from the abstract class.

  ```cpp
  Handle< AbsFieldState<P,Q> > s_old(s.clone());
  ```

- Inheriting/Derived class MUST have enough information to clone itself...
Abstract Classes: The HMC

```
template<typename P, typename Q>
class AbsHMCTrj {
public:
    virtual ~AbsHMCTrj() {};
    // operator() on next slide
protected:
    // Get at the Exact Hamiltonian
    virtual AbsHamiltonian<P,Q>& getMCHamiltonian(void) = 0;

    // Get at the Integrator
    virtual AbsIntegrator<P,Q>& getMDIntegrator(void) = 0;

    // Get at the MD traj length
    virtual Real getMDTrajLength(void) const = 0;
    virtual void refreshP(AbsFieldState<P,Q>& state) const = 0;
    virtual bool acceptReject(const Double& DeltaH) const = 0;
};
```

Functions so we can write the default operator()

Access to encapsulated information

lib/abs_hmc.h
virtual void operator()(AbsFieldState<P,Q>& s, const bool WarmUpP) {
 AbsIntegrator<P,Q>& MD = getMDIntegrator();
 AbsHamiltonian<P,Q>& H_MC = getMCHamiltonian();

 refreshP(s);
 H_MC.refreshInternalFields(s);

 Handle< AbsFieldState<P,Q> > s_old(s.clone());

 Double KE_old, PE_old, KE, PE;
 H_MC.mesE(s, KE_old, PE_old);
 MD(s, getMDTrajLength());
 H_MC.mesE(s, KE, PE);

 Double DeltaKE = KE - KE_old; Double DeltaPE = PE - PE_old;
 Double DeltaH = DeltaKE + DeltaPE;
 Double AccProb = where(DeltaH < 0.0, Double(1), exp(-DeltaH));
 QDPIO::cout << "AccProb=
 if(! WarmUpP) {
 bool acceptTestResult = acceptReject(DeltaH);
 QDPIO::cout << "AcceptP=" << acceptTestResult << endl;
 if (! acceptTestResult) {
 s.getQ() = s_old->getQ();
 s.getP() = s_old->getP();
 }
 }
}
And we're done?

• Sadly not. We have a good framework but:
 – These classes are abstract. We cannot 'create' instances of them.
 • We need derived (client) classes appropriate to the system we are simulating: implementation
 • However, these classes must supply 'tightly' defined interfaces
 • A lot of this is dull-code (implement get/set methods etc) -- we’ll skip over these. See them in the files.
 • Most of the hard work is encoded in our defaults.
 – We don't need to rewrite MD, or HMC ...
Concrete Classes: field state

- Our QCD state will consist of
 - `multild<LatticeColorMatrix>` for momenta
 - `multild<LatticeColorMatrix>` for the gauge fields
- Typing these involves a lot of finger exercise so we can make some abbreviations for shorthand:

```cpp
namespace HMC {
    typedef multild<LatticeColorMatrix> GaugeP;
    typedef multild<LatticeColorMatrix> GaugeQ;
}

class GaugeFieldState : public AbsFieldState<GaugeP, GaugeQ> {
public:
    ...
private:
    GaugeP p; // The momenta in this state
    GaugeQ q; // The "coordinates" in this state
};
```

Shorthand

Gauge Field State is an "implementation" of AbsFieldState<P,Q> with P=GaugeP and Q=GaugeQ

lib/qcd_field_state.h
In order to create and copy the GaugeState we need some constructors:

```cpp
GaugeFieldState(const GaugeP& p_, const GaugeQ& q_) {
    p.resize(Nd); q.resize(Nd);
    for(int mu=0; mu < Nd; mu++) {
        p[mu] = p_[mu]; q[mu] = q_[mu];
    }
}

GaugeFieldState(const GaugeFieldState& s) {
    p.resize(Nd); q.resize(Nd);
    for(int mu=0; mu < Nd; mu++) {
        p[mu] = s.p[mu]; q[mu] = s.q[mu];
    }
}

~GaugeFieldState() {};
```

~GaugeFieldState() {}; // mult1d<>-s clean up automatically
Now fulfill the rest of the interface

• We now need to supply the access methods and the clone() function

 // Clone function -- covariant return type
 GaugeFieldState* clone(void) const {
 return new GaugeFieldState(*this);
 }

 // Accessors
 const GaugeP& getP(void) const { return p; }
 const GaugeQ& getQ(void) const { return q; }

 // Manipulators
 GaugeP& getP(void) { return p; }
 GaugeQ& getQ(void) { return q; }

 see all of this in the file lib/qcd_field_state.h
Now the Hamiltonian

- Again, we need to add constructors

```cpp
class QCDHamiltonian : public AbsHamiltonian<GaugeP, GaugeQ>
{
public:
    //! virtual destructor:
    ~QCDHamiltonian() {};

    //! Constructor
    QCDHamiltonian(multild< Handle<AbsMonomial<GaugeP, GaugeQ> > > & m_) {
        monomials.resize(m_.size());
        for(int i=0; i < monomials.size(); i++) {
            monomials[i] = (m_[i]);
        }
    }

    ...

private:
    multild< Handle< AbsMonomial<GaugeP, GaugeQ> > > monomials;
};
```

Array of Handles of Monomials

Copy to internal monomial list

`lib/qcd_hamiltonian.h`
Fulfilling the Interface

- Then we just fulfill the interface that has no defaults (field refreshment, accessors, etc)

```cpp
int numMonomials(void) const {
    return monomials.size();
}

const AbsMonomial<GaugeP, GaugeQ>& getMonomial(int i) const {
    return *(monomials[i]);
}

AbsMonomial<GaugeP, GaugeQ>& getMonomial(int i) {
    return *(monomials[i]);
}
```

- NOTE: The cool bit! *Everything else* is already done for us in the AbsHamiltonian.

The *“de-references” the Handle<>*
Next Low Hanging Fruit: Leapfrog

• Here we need to do a bit of work but let's do the easy part first: Constructors etc.

```cpp
class QCDLeapfrog : public AbsLeapfrogIntegrator<GaugeP, GaugeQ> {
public:
    ~QCDLeapfrog(void) {} // Destructor

    // Constructor
    QCDLeapfrog(AbsHamiltonian<GaugeP, GaugeQ>& H_, int n_steps_) : H(H_), n_steps(n_steps_) {}

    int getNumSteps(void) const { return n_steps; }

protected:
    // leapP and leapQ on next slides

private:
    int n_steps;
    AbsHamiltonian<GaugeP,GaugeQ>& H;
};
```

`lib/qcd_leapfrog.h`
LeapP

• This is the step in the leapfrog where we update the momenta:

\[p \leftarrow p + \delta \tau F(q) \]

• For QCD, the q are the SU(3) link matrices U

• For an action S, the force is defined as:

\[F(U) = T \left[U_\mu \frac{\partial S(U)}{\partial U_\mu} \right] \]

• T[U] is the \textit{traceless anti-hermitian projection} back into the Lie algebra su(3):

\[u = \frac{1}{2} \left[(U - U^\dagger) - \frac{i}{N_c} \text{Tr} (U - U^\dagger) I_{N_c} \right] \]
LeapP

• We don't need to implement the T[] in the forces themselves, but only on the sum of forces in the leapP. We would need to put it in the forces, if we want to monitor them.

• The code for T[] is simple (lib/taproj.[h,cc]) :

```c
void taproj(LatticeColorMatrix& a)
{
    LatticeColorMatrix aux_1 = a;
    a -= adj(aux_1);
    if (Nc > 1) {
        // tmp = Im Tr[ a ]
        LatticeReal tmp = imag(trace(a));
        tmp *= (Real(1)/Real(Nc));
        LatticeColorMatrix aux = cmplx(0, tmp);
        a -= aux;
    }
    a *= (Real(1)/Real(2));
}
```
LeapP()

• With this in mind we have the following simple code for the SU(3) leapP:

```cpp
protected:
    void leapP(AbsFieldState<GaugeP,GaugeQ>& s, Real dt) const {
        GaugeP F(Nd);
        H.dsdq(F, s.getQ()); // Get the total force for H

        for(int mu =0; mu < Nd; mu++) {
            // p <- p + dt* T[ F ]
            // 1) project the force
            Example::taproj( F[mu] );

            // 2) Update the momenta.
            (s.getP())[mu] += dt * F[mu];
        }
    }
```
LeapQ

- This is where we update the gauge fields:

\[q \leftarrow q + \delta \tau p \]

- For QCD, the momenta are in the LieAlgebra su(3). We need to
 - exponentiate them into the group:
 \[P = e^{i\delta \tau p} \]
 - then “add” them to the “q” with SU(3) group addition (matrix multiplication):
 \[U \leftarrow U \oplus P = UP \]
An exact way to exponentiate \(\text{su}(3) \) elements

- Cayley–Hamilton:
 - For a traceless antihermitian \(3 \times 3 \) matrix
 \[
e^{iQ} = f_1 I + f_2 Q + f_3 Q^2
 \]

- In the eigenbasis of \(Q \):
 \[
 Q = M \Lambda_Q M^{-1} \quad \Lambda_Q = \begin{bmatrix}
 q_1 & 0 & 0 \\
 0 & q_2 & 0 \\
 0 & 0 & q_3
\end{bmatrix}
 \]

- The coefficients \(f_i \) are the solutions of:
 \[
 \begin{bmatrix}
 1 & q_1 & q_1^2 \\
 1 & q_2 & q_2^2 \\
 1 & q_3 & q_3^2
 \end{bmatrix}
 \begin{bmatrix}
 f_1 \\
 f_2 \\
 f_3
 \end{bmatrix}
 =
 \begin{bmatrix}
 e^{iq_1} \\
 e^{iq_2} \\
 e^{iq_3}
 \end{bmatrix}
 \]
su(3) exponentiation

- The system of equations can be solved in various ways:
 - Our implementation follows hep-lat/0311018 by Morningstar and Peardon
 - The code is in `lib/expmat.[h,cc]`
 - The routine is

\[
\text{void expmat(LatticeColorMatrix & iQ)}
\]

- While examining the code is instructive, it is too long a distraction here... see the paper and the code together. The file is quite short < 100 lines.
Leap back to leapQ

- With a matrix exponentiator thus handy, the code for leapQ is quite straightforward:

```cpp
void leapQ(AbsFieldState<GaugeP,GaugeQ>& s, Real dt) const {
    LatticeColorMatrix tmp_1;
    LatticeColorMatrix tmp_2;
    for(int mu = 0; mu < Nd; mu++) {
        tmp_1 = dt*(s.getP())[mu];  // Exponentiation.
        Example::expmat(tmp_1);
        tmp_2 = tmp_1*(s.getQ())[mu];  // Group addition
        (s.getQ())[mu] = tmp_2;
        // Reunitarize u[mu]
        Example::reunit((s.getQ())[mu]);
    }
}
```

lib/qcd_leapfrog.h
Now for the HMC

• Essentially the HMC for QCD turns out to be mostly just a collector for the Hamiltonian, integrator and the trajectory length:

```cpp
class QCDHMCTrj : public AbsHMCTrj<GaugeP,GaugeQ> {
public:
  ~QCDHMCTrj() {};
  QCDHMCTrj(Handle< AbsHamiltonian<GaugeP,GaugeQ> > H_,
             Handle< AbsIntegrator<GaugeP,GaugeQ> > integrator_,
             const Real& MD_traj_length_) :
    H(H_), the_integrator(integrator_),
    MD_traj_length(MD_traj_length_) {}

protected:
  // fulfill obligations here
private:
  Handle< AbsHamiltonian<GaugeP,GaugeQ> > H;
  Handle< AbsIntegrator<GaugeP,GaugeQ> > the_integrator;
  Real MD_traj_length;
};
```

`lib/qcd_hmc.h`
Refreshing Momenta

• We must supply a routine to refresh our momenta
 – Our momenta have too large a variance for our SU(3) generators. To match them up we must multiply the momenta by \(\sqrt{\frac{1}{2}} \)

```cpp
void refreshP(AbsFieldState<GaugeP,GaugeQ>& state) const {
   for(int mu=0; mu < Nd; mu++) {
      gaussian(state.getP()[mu]); // Fill with noise
      state.getP()[mu] *= sqrt(Real(0.5)); // normalisation
      Example::taproj(state.getP()[mu]);
   }
}
```
We want to reuse our Accept/Reject test in several HMC classes (eg in SHO). So we isolate it in its own files:

- lib/global_metropolis_accrej.[h,cc]

```cpp
bool globalMetropolisAcceptReject(const Double& DeltaH) {
    bool ret_val;
    if ( toBool( DeltaH <= Double(0)) ) {
        ret_val = true;
    } else {
        Double AccProb = exp(-DeltaH);
        Double uni_dev; random(uni_dev);

        if( toBool( uni_dev <= AccProb ) ) { ret_val = true; }
        else { ret_val = false; }
    }
    return ret_val;
}
```

- If $dH \leq 0$ then always accept
- Get uniform deviate pseudo random number
- accept if random number is less than acceptance probability
Accept/Reject

• With this small factoring in place, supplying the accept reject function for QCDHMCTrj is very simple:

```cpp
bool acceptReject(const Double& DeltaH) const {
    globalMetropolisAcceptReject(DeltaH);
}
```

• And our HMC is done except for the Monomials...
The Wilson Gauge Monomial

• We need constructor, destructor, S() and Force Term:
• Our declarations are in lib/wilson_gauge_monomial.h:

```cpp
class WilsonGaugeMonomial : public AbsMonomial<GaugeP,GaugeQ> {
public:
    ~WilsonGaugeMonomial() {}
    WilsonGaugeMonomial(const Real& beta_) : beta(beta_) {}

    /// Compute dsdq for the system... Not specified how to actually do this
    void dsdq(GaugeP& F, const GaugeQ& q) const;

    /// Compute the total action
    Double S(const AbsFieldState<GaugeP,GaugeQ>& s) const;

    /// Refresh pseudofermion fields if any
    void refreshInternalFields(const AbsFieldState<GaugeP,GaugeQ>& s) {} 
private:
    Real beta;
};
```
The Wilson Gauge Action

- The action (lib/wilson_gauge_monomial.cc) is just our plaquette routine from the first exercise, multiplied by: \(\frac{\beta}{N_c} \)

```cpp
Double WilsonGaugeMonomial::S(const AbsFieldState<GaugeP,GaugeQ>& s) const
{
    Double S = zero;
    const GaugeQ& u = s.getQ();

    for(int mu=1; mu < Nd; ++mu) {
        for(int nu=0; nu < mu; ++nu) {
            S += sum(real(trace(u[mu]  
                       *shift(u[nu],FORWARD,mu)  
                       *adj(shift(u[mu],FORWARD,nu))  
                       *adj(u[nu]))));
        }
    }
    S *= Double(-beta)/Double(Nc);
    return S;
}
```

Thursday, August 23, 2012
Wilson Gauge Force

- Using the fact that \(\frac{\partial U_\mu}{\partial U_\mu} = 1 \)

- For a given \(U_\mu \) in a plaquette

\[
\text{ReTr } U_{\mu \nu} = \frac{1}{2} \text{Tr} \left[U_{\mu \nu} + U^\dagger_{\mu \nu} \right]
\]

- A plaquette then gives the following force contributions to the links it contains:

\[
\frac{\partial}{\partial U_\mu} \quad \begin{array}{c}
\text{from } U_{\mu \nu} \\
\text{from } U^\dagger_{\mu \nu} \\
\text{hermitian conjugate from variation w.r.t } U_\mu
\end{array}
\]

\[
\begin{array}{c}
\boxed{\text{+ }} \\
\boxed{\text{+ }} \\
\boxed{\text{+ }} \\
\boxed{\text{+ }}
\end{array}
\]
void WilsonGaugeMonomial::dsdq(GaugeP& F, const GaugeQ& u) const
{
 F.resize(Nd);

 LatticeColorMatrix tmp_0; // Temporaries
 F = zero;
 // Cycle through all the plaquettes
 for(int mu = 0; mu < Nd; mu++) {
 for(int nu=mu+1; nu < Nd; nu++) {
 tmp_0 = adj(shift(u[mu], FORWARD, nu))*adj(u[nu]);
 F[mu] += shift(u[nu], FORWARD, mu)*tmp_0;
 F[nu] += shift(tmp_0*u[mu], BACKWARD, mu);
 tmp_0 = adj(shift(u[nu], FORWARD, mu))*adj(u[mu]);
 F[mu] += shift(tmp_0*u[nu], BACKWARD, nu);
 F[nu] += shift(u[mu], FORWARD, nu)*tmp_0;
 }
 }
 tmp_0 = Real(-beta)/(Real(2*Nc))*F[mu];
 F[mu] = u[mu]*tmp_0;
}
Two flavours of Wilson Fermions

• To simulate the fermion determinant, we use pseudofermions:

\[\det(M^\dagger M) = \int d\phi^\dagger d\phi \ e^{-\phi^\dagger (M^\dagger M)^{-1} \phi} \]

• This gives us an action:

\[S = \phi^\dagger (M^\dagger M)^{-1} \phi \]

• The variation of the action with respect to the gauge fields:

\[\frac{\delta S}{\delta U} = -\phi^\dagger (M^\dagger M)^{-1} \left[\frac{\delta M^\dagger}{\delta U} M + M^\dagger \frac{\delta M}{\delta U} \right] (M^\dagger M)^{-1} \phi \]

• We define, for later convenience:

\[X = (M^\dagger M)^{-1} \phi, \quad Y = MX \]

\[S = \langle \phi, X \rangle \]
The Wilson Fermion Monomial

• Much like the other monomials but:
 – Monomial will now store pseudofermion fields (phi)
 • Our `refreshInternalFields()` method will not be empty
 – We will add a `getX()` function to compute X
 • This needs to solve
 \[
 (M^\dagger M) X = \phi
 \]
 • so we will need a CG Solver
 • and we will need to store its parameters.
 • We will need to modify our LinearOperator to allow us to compute:
 \[
 X^\dagger \frac{\delta M^\dagger}{\delta U} Y \quad \text{and} \quad Y^\dagger \frac{\delta M}{\delta U} X
 \]
class TwoFlavorWilsonFermMonomial : public AbsMonomial<GaugeP, GaugeQ> {
public:
 TwoFlavorWilsonFermMonomial(const Real& Mass_,
 const Real& RsdCG_,
 int MaxCG_) :
 Mass(Mass_), RsdCG(RsdCG_), MaxCG(MaxCG_) {}
 void dsdq(GaugeP& F, const GaugeQ& q) const;
 Double S(const AbsFieldState<GaugeP,GaugeQ>& s) const;
 void refreshInternalFields(const AbsFieldState<GaugeP,GaugeQ>& s) ;
private:
 void getX(LatticeDiracFermion& X, const GaugeQ& u) const;
 Real Mass;
 Real RsdCG;
 int MaxCG;
 LatticeDiracFermion phi;
};
Fresh Fields.

\[e^{-\phi^\dagger \left(M^\dagger M \right)^{-1} \phi} = e^{-\eta^\dagger \eta} \]

Gaussian with variance 1/2

Transformation: \[\Rightarrow \phi = M^\dagger \eta \]

void
TwoFlavorWilsonFermMonomial::refreshInternalFields(
 const AbsFieldState<GaugeP,GaugeQ>& s)
{
 const GaugeQ& u=s.getQ();
 UnprecWilsonLinOp M(u, Mass);

 LatticeDiracFermion eta;
 gaussian(eta);
 eta *= sqrt(0.5);

 M(phi, eta, -1);
}
Getting X

• This is a simple matter of invoking your solver. Should be familiar from session 2 exercises (you'll need your CG solver)

```c++
void TwoFlavorWilsonFermMonomial::getX(LatticeFermion& X, const GaugeQ& u) const {

    UnprecWilsonLinOp M(u, Mass);
    Real RsdCGOut;
    int n_count;
    InvCG(M,
        phi,
        X,
        RsdCG,
        MaxCG,
        RsdCGOut,
        n_count);
}
```

Just solve:

\[
(M^\dagger M) \cdot X = \phi
\]

with Conjugate Gradients

\[M^\dagger M\]

is manifestly Hermitian & positive definite
Computing S

- Once we have X, computing the action is easy since:

$$\phi \left(M^\dagger M \right)^{-1} \phi = \langle \phi, X \rangle$$

- The code is straightforward:

```cpp
//! Compute the total action
Double TwoFlavorWilsonFermMonomial::S(const AbsFieldState<GaugeP,GaugeQ>& s) const {
    const GaugeQ& u=s.getQ();
    LatticeFermion X=zero;
    getX(X,u);
    Double result=real(innerProduct(phi,X));
    return result;
}
```

`lib/wilson_ferm_two_flavor_monomial.cc`
Computing the force

• We need X, and $X^\dagger \frac{\delta M^\dagger}{\delta U} Y$

• We will delegate the matrix derivative to our linear operator
 – Will allow us to generalise our Wilson Monomial to any two flavour monomial.

• We extend our LinearOperator class to a new class DiffLinearOperator
 – This class can evaluate our derivative with a new function:

    ```cpp
    void deriv(P& F, const T& X, const T& Y, int isign)
    ```
 – The `isign` decides whether we do the derivative of M or its conjugate (+1 or -1 respectively)
The Extended Linear Operator Class

template<typename P, typename T>
class DiffLinearOperator : public LinearOperator<T> {
public:
 virtual ~DiffLinearOperator() {} {}

 // Make sure derived classes can override the operator() method
 virtual void operator()(T& result, const T& source, int isign) const = 0;

 // Make sure derived classes can override the subset method
 // The subset on which the lattice acts
 virtual const Subset& subset() const = 0;

 // Now a derivative term of the form X^\dagger \dot(M) Y
 virtual void deriv(P& F, const T& X, const T& Y, int isign) const = 0;
};
The Derivative Of M

Since

$$M = (N_d + M) - \frac{1}{2} D \, \Rightarrow \, \frac{\delta M}{\delta U_\mu} = -\frac{1}{2} \frac{\delta D}{\delta U_\mu}$$

Recall that:

$$D_{x,y} = \sum_{\mu} \left[(1 - \gamma_\mu) U_{x,\mu} \delta_{x+\hat{\mu}, y} + (1 + \gamma_\mu) U_{x-\hat{\mu}, \mu} \delta_{x-\hat{\mu}, y} \right]$$

So we have:

$$\frac{\delta D}{\delta U_\mu} = (1 - \gamma_\mu) \delta_{x+\hat{\mu}, y}$$

And thus:

This is just a trace identity

$$X \frac{\delta D}{\delta U_\mu} Y = X^\dagger (1 - \gamma_\mu) Y_{x+\hat{\mu}} = \text{Tr}_s \left[(1 - \gamma_\mu) Y_{x+\hat{\mu}} \otimes X^\dagger \right]$$
We add a derivative routine to `dslashm_w.cc`

```c++
void dslash_deriv( multild<LatticeColorMatrix>& F,
     const LatticeDiracFermion& X,
     const LatticeDiracFermion& Y,
     int isign, int cb)
{
    F.resize(Nd);
    for(int mu = 0; mu < Nd; ++mu) {
        LatticeDiracFermion temp_ferm1;
        LatticeHalfFermion tmp_h;

        switch (isign) {
            case 1:
                // Undaggered: Minus Projectors
                switch(mu) {
                    case 0:
                        tmp_h[rb[1-cb]] = spinProjectDir0Minus(Y);
                        temp_ferm1[rb[1-cb]] = spinReconstructDir0Minus(tmp_h);
                        break;
                    ...  // other mu values and isign
                }
        }
    }
}
```

Evaluate
`temp_ ferm= (1 – \gamma_\mu) Y`
lke in session2 with projector/reconstructor
Now shift and trace

...
LatticeDiracFermion temp_ferm2 = shift(temp_ferm1, FORWARD, mu);

// This step supposedly optimised in QDP++
F[mu][rb[cb]] = traceSpin(outerProduct(temp_ferm2,X));
F[mu][rb[1-cb]] = zero;
}
}

QDP++ supplies
traceSpin() & outerProduct()

\[
X \frac{\delta D}{\delta U_\mu} Y = X^\dagger (1 - \gamma_\mu) Y_{x+\hat{\mu}} = \text{Tr}_s \left[(1 - \gamma_\mu) Y_{x+\hat{\mu}} \otimes X^\dagger \right]
\]
Now back to the Unprec Wilson LinOp

```cpp
void UnprecWilsonLinOp::deriv(multi1d<LatticeColorMatrix>& F,
   const LatticeDiracFermion& X,
   const LatticeDiracFermion& Y,
   int isign) const
{

   // Dslash Derivatives
   F.resize(Nd);
   for(int mu=0; mu < Nd; mu++) { F[mu]=zero; }

   multi1d<LatticeColorMatrix> F_tmp(Nd);
   dslash_deriv(F, X, Y, isign, 0);
   dslash_deriv(F_tmp, Y, X, isign, 1);
   F += F_tmp;
   for(int mu = 0; mu < Nd; ++mu) {
      F[mu] *= Real(-0.5);
   }
}
```
And back to the monomial force:

```cpp
void TwoFlavorWilsonFermMonomial::dsdq(GaugeP& F, const GaugeQ& u) const
{
    UnprecWilsonLinOp M(u,Mass);
    LatticeDiracFermion X,Y;

    getX(X,u);  // (M^\dag M) X = \phi
    M(Y,X,1);   // Y = M X

    GaugeP F_tmp;
    M.deriv(F_tmp, X, Y, -1);
    M.deriv(F, Y, X, +1);
    for(int mu=0; mu < Nd; mu++) {
        F_tmp[mu] += F[mu];
        F_tmp[mu] *= Real(-1);
    }
    // Now multiply by U
    for(int mu=0; mu < F.size(); ++mu) {
        F[mu] = u[mu]*F_tmp[mu];
    }
}
```

Accumulate add - sign

```
X^\dag \frac{\delta M^\dag}{\delta U} Y
```

```
Y^\dag \frac{\delta M}{\delta U} X
```

```
U_\mu \frac{\delta S}{\delta U_\mu}
```

lib/wilson_ferm_two_flavor_monomial.cc
and we are done

• all that is needed now is a driver for main() - see next slides

• Recap:

 - We defined abstract class structure needed for HMC:
 • field state, integrator, hamiltonian, monomials, HMC
 • these classes provided interface functions and default behaviour

 - We presented concrete implementations
 • GaugeFieldState, QCDHamiltonian, QCDLeapfrog, QCDHMCTraj
 • Presented Gauge and Fermion Monomials

• Additional Exercises and background material follow:
 • Details of main() to set up the classes for use
 • Omelyan’s integrator
 • Even-Odd (red-black) preconditioning in HMC.
Highlights of the Driver

- All we need is a main program to drive it all
 - example3/qcd.cc
- Highlights: Starting up the state

```cpp
Seed seed = 27;
RNG::setrn(seed);

for(int mu=0; mu < Nd; mu++) {
  gaussian(initial_q[mu]);
  reunit(initial_q[mu]);
  gaussian(initial_p[mu]);
  initial_p[mu] *= sqrt(Real(0.5));
  taproj(initial_p[mu]);
}

// Create a field
GaugeFieldState s(initial_p, initial_q);
```

- Reseed RNG
- Usual Disordered Start
- A momentum refresh...
- Create State
One main() to drive it all...

• Setting up the Monomials and Hamiltonian & Integrator

Real beta=Real(5.4); // Gauge Coupling
Real Mass=0.02; // Quark Mass
int MaxCG=500; // Max no of solver iterations
Real RsdCG=Real(1.0e-8); // Desired Solver Tolerance
int n_steps = 16; // No of steps over a trajectory
Real traj_length=1; // Length of the MD trajectory

// Create a monomial list of 2 terms.
multid< Handle< AbsMonomial<GaugeP,GaugeQ> > > monomials(2);

monomials[0] = new WilsonGaugeMonomial(beta);
monomials[1] = new TwoFlavorWilsonFermMonomial(Mass, RsdCG, MaxCG);

// Group Monomials into a Hamiltonian
Handle<AbsHamiltonian<GaugeP,GaugeQ> > H(new QCDHamiltonian(monomials));
Handle<AbsIntegrator<GaugeP,GaugeQ> > integrator(new QCDLeapfrog(*H,n_steps));
Setting Up and Running the HMC

QCDHMCTrj hmc(H, integrator, traj_length);

for(int i=0; i < 1000; i++) {
 hmc(s, false);

 Double plaquette; Example::MeasPlq(s.getQ(), plaquette);
 QDPIO::cout << "i=" << i << " Plaquette= " << plaquette << endl;
}
Exercise: Omelyan's integrator

• De Forcrand and Takaishi suggest the use of an Omelyan Integrator in Phys. Rev. E73(2006) 036706 hep-lat/0505020

• Algorithm (per timestep dt):

 leapQ(λdt)
 leapP($dt / 2$)
 leapQ($(1 - 2\lambda) dt$)
 leapP($dt / 2$)
 leapQ(λdt)

• Write an abstract class for this integrator following leapfrog as an example. Write a QCD Implementation. Use in qcd.cc instead of leapfrog
HMC And Even Odd Preconditioning

• Remember even Odd Preconditioning from Lecture 2?

\[
M = \begin{bmatrix}
M_{ee} & M_{eo} \\
M_{oe} & M_{oo}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 0 \\
M_{oe}M_{ee}^{-1} & 1
\end{bmatrix}
\begin{bmatrix}
M_{ee} & 0 \\
0 & M_{oo} - M_{oe}M_{ee}^{-1}M_{eo}
\end{bmatrix}
\begin{bmatrix}
1 & M_{ee}^{-1}M_{eo} \\
0 & 1
\end{bmatrix}
\]

\[
= L\tilde{M}U
\]

• How does this impact HMC?
 – Way 1: Preconditioning system reduces cost of solving
 \[
 (M^\dagger M)X = \phi
 \]
 – Way 2: By reformulating our Hamiltonian in term of
 • Can reduce solver costs AND MD Force
HMC and Even Odd Preconditioning

- Recall that fundamentally we are trying to simulate the determinant by our pseudofermion games:

\[
\det(M^\dagger M) = \int d\phi^\dagger d\phi \ e^{-\phi^\dagger (M^\dagger M)^{-1} \phi}
\]

- With preconditioning we can play determinant games:

\[
\det(M^\dagger M) = \det\left(\begin{bmatrix} U^\dagger \tilde{M}^\dagger L^\dagger \\ L\tilde{M}U \end{bmatrix}\right) \\
= \det(\tilde{M}^\dagger \tilde{M}) \quad \text{since } \det(L) = \det(U) = 1 \\
= \det(\tilde{M}_{ee}^\dagger \tilde{M}_{ee}) \det(\tilde{M}_{oo}^\dagger \tilde{M}_{oo})
\]
HMC and Even-Odd Preconditioning

• For Wilson Fermions $\tilde{M}_{ee} = 1$ and so:

$$\det \left(M^\dagger M \right) = \det \left(\tilde{M}_{oo}^\dagger \tilde{M}_{oo} \right)$$

$$= \int d\phi_o^\dagger d\phi_o \ e^{-\phi_o^\dagger \left(\tilde{M}_{oo}^\dagger \tilde{M}_{oo} \right)^{-1} \phi_o}$$

• NB: This is not true for all fermions. Some have $\tilde{M}_{ee} \neq 1$
 – In this case we must deal with \tilde{M}_{ee}
 – This can perhaps be done explicitly (eg: in Clover Fermions)

$$\det \left(\tilde{M}_{ee}^\dagger \tilde{M}_{ee} \right) = e^{\ln \det \left(\tilde{M}_{ee}^\dagger \tilde{M}_{ee} \right)} = e^{\text{Tr} \ln \left(\tilde{M}_{ee}^\dagger \tilde{M}_{ee} \right)}$$
HMC And Even Odd Preconditioning

- Preconditioned Action:

\[
S = \phi_o^\dagger \left(\tilde{M}_{oo} \tilde{M}_{oo} \right)^{-1} \phi_o - 2 \text{Tr} \ln \det |\tilde{M}_{ee}|
\]

- For Wilson Fermions force stays same as before except for:

\[
X^\dagger \frac{\delta \tilde{M}}{\delta U} Y = \frac{-1}{4(N_d + M)} X^\dagger \frac{\delta}{\delta U} [D_{oe} D_{eo}] Y
\]

\[
X^\dagger \frac{\delta}{\delta U} [D_{oe} D_{eo}] Y = X^\dagger \frac{\delta D_{oe}}{\delta U} D_{eo} Y + X^\dagger D_{oe} \frac{\delta D_{eo}}{\delta U} Y
\]

\[
= X^\dagger \frac{\delta D_{oe}}{\delta U} \tilde{Y} + \tilde{X}^\dagger \frac{\delta D_{oe}}{\delta U} Y
\]

- NOTE: Force still acts on ALL of the lattice
HMC And Preconditioning: Key Points

• Preconditioning can be done in 2 ways
 – Way 1: as a trick to speed up the solver
 – Way 2: it can be used to rewrite
 • The Action/Hamiltonian
 • The Force Terms
in terms of the preconditioned matrices
 – The magnitude of forces varies with the condition number of the matrices in the force term (ie Way 2).
 • Better conditioned matrices \(\Rightarrow\) Smaller forces
 • Smaller forces \(\Rightarrow\) One can take LONGER steps
 • \(\Rightarrow\) Multiple time scale integrators and most recent HMC algorithmic tricks...
Advanced Exercises

• Extend the Even-Odd Preconditioned Linear Operator from Session 2, with a derivative function()
 – To be completely general you'll need a derivative for both the even-even, even-odd, odd-even and odd-odd parts
 – You can then code the full deriv() as a default in terms of these functions

• Extend the Even-Odd Wilson Operator with a derivative function
 – Because your even-even term is trivial you may wish to override the derivative in the base class you've just written
Advanced Exercises

• Code a Monomial for 2 flavours of Even Odd Wilson Fermions.
 – field refreshment over just the odd subset now
 – Use the subset in the inner product for the action
 – force should not change, except for the kind of matrix you use.

• Replace the unpreconditioned Wilson monomial with your new preconditioned one in the qcd.cc code

• Without changing anything else run the HMC code
 – What happens to your iteration counts?
 – What happens to your acceptance rate