Organizers:
Calvin Johnson
cjohnson@sciences.sdsu.edu
Dick Furnstahl
furnstahl.1@osu.edu
Erich Ormand
ormand1@llnl.gov
Bira van Kolck
vankolck@physics.arizona.edu
Program Coordinator: Laura Lee
lee@phys.washington.edu
(206) 6853509
Application form
Seminar schedules
Frequently asked questions
Talks online
Obtain an INT preprint number
Exit report
INT homepage

Effective Field Theories and the ManyBody Problem
March
23  June 5, 2009
The goal of this workshop
is to tie together and build on
the recent success stories in the nuclear manybody problem at different
nucleon number A, which involve three broad communities:
 Effective field theories (EFTs) and fewbody systems.
Nuclear EFTs, both pionful and pionless, incorporate
QCD symmetries and allow systematic expansions of nuclear
observables in powers of momenta.
A related approach uses the renormalization group to
generate lowmomentum potentials.
 General manybody theories (MBTs) for light and medium nuclei.
Computational approaches include
Green's Function and Auxiliary Field Monte Carlo,
shell model (nocore, full configuration interaction, Monte Carlo,
etc.), and coupled cluster methods.
For light nuclides one has nearly exact calculations
of bound states starting from good quality internucleon interactions.
 Density functional theory (DFT) for medium and heavy nuclei.
Computational limits preclude using MBTs to systematically
address heavy nuclides,
so one turns to density functional theory and
its extensions. There are
different phenomenological approaches, such as Skyrme, Gogny,
and the relativistic mesonexchange models, and new
microscopic approaches are under development.
There have been a few preliminary attempts to marry the elegance of EFTs to
the power of recent manybody calculations, but significant
conceptual and language barriers exist.
We will provide a forum where these obstacles can be breached
and crosspollination pushed much farther.
A goal is for EFT
experts to go away with a good idea of what MBT and DFT practitioners
need and can or cannot use, and for MBT and DFT practitioners
to understand what EFTs can (currently) provide.
We note that all three communities restrict the
manybody degrees of freedomcutoffs in momentum or position space for
EFTs, cutoffs in cluster correlations (for example) in MBTs, and placing the weight
of correlations in the energy functional for DFTs.
Can we have a unified framework for
systematic and controlled reduction of the degrees of freedom for these
disparate disciplines? How do we transplant information about reduced degrees of
freedom from one community to another?
The workshop program will address three Big Questions, given here with
some representative subquestions:
 How do EFTs evolve with A, and can we at some point extrapolate smoothly?
 How far in A (and density)
can one push the pionless EFT?
 How can we calculate with EFT for A > 3?
 How can we put the manybody dependence of EFTs in a tractable form into
MBTs?
 MBT methods have used EFT potentials as input in the same manner as phenomenological ones.
Is there a more efficient/correct way to marry EFT and MBTs?

How can we improve the manybody methods?
How does one derive simultaneous effective operators
(for electron scattering, beta decay, etc.) along with the interaction
itself?
Can we justify approximations or selection of certain
contributions with an EFT power counting?
 Can we develop EFTs specifically for manynucleon
systems?
 Can the choice of EFT fields be exploited to either minimize,
or put into a form convenient for MBT and DFT, the three/manybody interaction?
 How can we use EFTs to constrain DFTs?

How can EFT help to provide muchneeded
controlled extrapolations and theoretical error bars?

Since DFT can be cast in the form of an effective action
approach, it is immediately compatible with EFT in principle.
How do we implement this in practice?

What are the possible EFTs for nuclear matter?
Can we write an EFT around the Fermi surface?
Does Pauli blocking make the EFT (more?) perturbative, as suggested by
work with lowmomentum potentials?
Is there a covariant EFT that can explain and improve
the successes of ``relativistic mean field'' phenomenology?
