1. In class we derived a formula for the survival probability of an electron neutrino undergoing vacuum oscillations. Following that calculation exactly, calculate the probability that it has become a muon neutrino at point x. (That is, take the overlap of the wave function with a $|\nu_\mu\rangle$.) Show that the sum of the two probabilities is one. Graph the electron and muon probabilities as a function of x.

2. Rewrite our formula for the vacuum neutrino oscillation length by using the following normalized dimensionless quantities: $E/$MeV; $\delta m^2/$eV2; L_o/1 meter. If you do things right, all that should remain is some dimensionless number relating L_o to the other quantities. Stopped pions produce neutrinos of about 35 MeV average energy. If you are searching for neutrino oscillations corresponding to $\delta m^2 \sim 10^{-3}$ eV2, how far from the source should you place your detector? Do you think it might be helpful to use more than one location? What if the neutrinos had energies of 50 GeV? This last answer tells you how far an underground lab should be from Fermilab to test the atmospheric neutrino oscillation results of SuperKamiokande.

3. Consider a monoenergetic electron neutrino beam of energy E. It travels from a source through vacuum a distance L_o, then through matter a distance L_o, with L_o defined as in problem 2. It exits the matter and is immediately measured. Calculate the electron neutrino survival probability as a function of the electron density in the matter. Note this problem is very different from the MSW problem considered in class. It involves propagation through constant density, except for an abrupt change in density as the neutrino enters or exits matter. The appropriate approximation to use is the sudden approximation. (See me for an explanation if you are not familiar with this.) From the result you find, describe the effects of the matter. In this exploration you can pick a δm^2 of 0.01 eV2, a mixing angle of 45 degrees, a neutrino energy of 50 MeV, and consider only two flavors (say electron and muon). Note that, if the matter is removed, the experimentalist would measure the full flux of electron neutrinos. Is it possible for the experimentalist to measure a much smaller flux of electron neutrinos, because of the matter?

4. In class a 2 by 2 matrix differential equation was given for vacuum oscillations. This formula involve $da_e(t)/dt$ and $da_\mu(t)/dt$. Derive this by following these steps:
 a) start with a neutrino state $|\nu(t)\rangle = a_e(t)|\nu_e\rangle + a_\mu(t)|\nu_\mu\rangle$. So the initial condition involves some choice of $a_e(0)$ and $a_\mu(0)$. In analogy with what we did in class for the special case $a_e(0) = 1$, $a_\mu(0) = 0$, find an expression for $a_e(t)$ and $a_\mu(t)$. (That is, rewrite $|\nu(0)\rangle$ in terms of $a_e(0)$ and $a_\mu(0)$ and the mass eigenstates, propagate the mass eigenstates, and then re-
express the mass eigenstates in terms of flavor eigenstates.) Keep all phases.
b) Exercise a) then defines $a_e(t)$ and $a_\mu(t)$. Show that these quantities satisfy the 2 by 2 matrix formula given in class. Note that you are allowed to redefine $a_e(t)$ and $a_\mu(t)$ by phases. You will have to do this. (I suggest you first derive a set of differential equations that the original $a_e(t)$ and $a_\mu(t)$ satisfy. Once you have those, figure out what phases you need to introduce to get rid of terms you don’t want.)

5. We mentioned in class the explosive burning of ^{28}Si into iron-group nuclei. It was also noted that the peak temperature achieved when the shock wave passes through the Si shell is about $T_9 \sim 6$.
a) Consider the process $^{28}\text{Si} + ^{28}\text{Si} \rightarrow ^{56}\text{Ni} + \gamma$. Estimate the rate for this reaction in sufficient detail that you can answer the question: will this reaction make significant ^{56}Ni under the conditions described above? Feel free to assume resonant production, leaving the widths as unknowns but basing your conclusions on the Coulomb physics.
b) Similarly, give a rough estimate of the rates of the reaction $^{28}\text{Si} (\gamma, \alpha)^{24}\text{Mg}$ relative to that in a). Again, leave the widths unspecified, but otherwise handle the Coulomb physics properly.
c) Reactions such as those in b) generate free αs, which can in turn do (α, γ) reactions. Calculate the ratio

$$\frac{N(^{28}\text{Si})N(\alpha)}{N(^{32}\text{S})}$$

where N represents a number density, in terms of the mass difference Q between ^{28}Si and $\alpha + ^{32}\text{S}$. Evaluate this expression at $T_9=6$. If you use the Saha equation, explain why this is ok based on b). Could I also apply the Saha equation to the reaction in a)?
d) We noted that the binding energy per nucleon increases until one reaches iron. Give a simple argument, based on physical insight or thermodynamics, about how Si burns to Fe.