Low-Energy Nuclear Experiments
Lecture 3: ‘Probing’ Wavefunctions

Heather L. Crawford
Nuclear Science Division
Lawrence Berkeley National Laboratory
The (Third) Plan

• Investigating level schemes
 • Decay spectroscopy

• Details of nuclear wavefunctions
 • Single particle ‘occupancies’ and spectroscopy with nuclear reactions
 • Excited state lifetimes and transition probabilities

• Example – planning an experiment
 • What, where, why?
Level schemes – collective vs. single particle

Level Schemes Contain Structural Information

Collective Rotation

Single Particle Alignment
• The majority of nuclides on the chart decay via β^+ or β^- decay
 o $n \rightarrow p + \beta^- + \nu_e$
 o $p \rightarrow n + \beta^+ + \bar{\nu}_e$

• We can consider β-decay (and other decays) as a tool to populate excited states in daughter nuclei, but with a unique selectivity
Beta-Delayed Gamma Spectroscopy

- Gamma rays following decay events provide information on low-level structure of daughter nuclei.

Isomeric Decay

- Depending on the production mechanism, nuclei may be produced in long-lived excited states (isomeric states).
- A TAC for implantation-gamma provides the possibility for isomer lifetime determination, if you look for gammas following an implantation.
The use of highly-segmented detectors (usually Si) allows temporal and spatial correlations between implanted nuclei, and their subsequent decays → detect the implant and the decay to obtain half-lives and information on levels in the daughter relative to the parent ground state.
β-decay spectroscopy set-up: NSCL
A. Look at the gamma-rays in coincidence with the nucleus of interest (56Sc) implantations – by fitting half-lives of the isomer, and through gamma-gamma correlations, build up a level scheme, and can get relative spin-parities for the states in 56Sc.

HLC et al., PRC 82, 014311 (2010).
Looking at gamma-gated half-lives provides information on parent. In this case, two distinct lifetimes indicates two beta-decaying states in 56Sc.

<table>
<thead>
<tr>
<th>E_{γ} (keV)</th>
<th>$T_{1/2}$ (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>591.6 ± 0.3</td>
<td>78 ± 20</td>
</tr>
<tr>
<td>689.5 ± 0.3</td>
<td>74 ± 9</td>
</tr>
<tr>
<td>751.0 ± 0.4</td>
<td>28 ± 5</td>
</tr>
<tr>
<td>1128.7 ± 0.3</td>
<td>57 ± 6</td>
</tr>
<tr>
<td>1160.5 ± 0.3</td>
<td>72 ± 8</td>
</tr>
<tr>
<td>1203.6 ± 0.3</td>
<td>71 ± 19</td>
</tr>
<tr>
<td>1467.3 ± 0.4</td>
<td>103 ± 20</td>
</tr>
<tr>
<td>1495.0 ± 0.3</td>
<td>141 ± 42</td>
</tr>
<tr>
<td>1711.8 ± 0.5</td>
<td>26 ± 11</td>
</tr>
</tbody>
</table>

By looking at decays and correlating with 56Sc implants, see gamma-rays in 56Ti – build up level scheme.

β-decay spectroscopy: complex example
D. Gate on implantations that came in coincidence with isomer gamma-rays and look at half-life → determine which state the isomer populates, and fix the spin/parity.
Alpha decay

- α decay occurs only in heavier systems on the nuclear chart.
- Alpha decay however probes different aspects of the nuclear forces.

- Different selectivity in the process --> favour low L alpha emission.
Efficiency is critical!! Gas-filled separators ‘collect’ charge states, high efficiency separation, and Si box-type arrays provide high efficiency for detecting residues.
Spectroscopy from element 115

Probing wavefunctions
Beyond excitation energies and spins?

Can we probe the details of the wavefunction ‘directly’?

Is there a way to tell where the particles are in terms of single-particle states (even within a specific model)?

- Protons
 - $d_{3/2}$
 - $s_{1/2}$
 - $d_{5/2}$

- Neutrons
 - $p_{3/2}$
 - $f_{7/2}$
 - $d_{3/2}$
 - $s_{1/2}$
 - $d_{5/2}$

^{47}Ca

Excitation energies:
- 2014 keV
- 3562 keV
- 3999 keV
- 437 keV
- 4403 keV
- 4811 keV

Additional energies:
- 2578 keV
- 2599 keV
- 2875 keV
- 3562 keV
- 3999 keV
- 437 keV
- 4403 keV
- 4811 keV
- 564 keV
- 585 keV
- 862 keV
- 47Ca

0 keV
Direct nucleon removal (or addition)

- Information regarding the ‘occupancy’ of single-particle states can be investigated within a model framework.
- Two energy regimes → low-energy transfer experiments and intermediate energy knockout.

\[
\begin{array}{c}
\text{A}Z_N \\
\hline
\text{8} \\
\hline
\text{d}_{5/2} \\
\text{d}_{3/2} \\
\text{s}_{1/2} \\
\text{f}_{7/2} \\
\text{p}_{3/2}
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{A}^{-1}Z_{N-1} \\
\hline
\text{8} \\
\hline
\text{d}_{5/2} \\
\text{d}_{3/2} \\
\text{s}_{1/2} \\
\text{f}_{7/2} \\
\text{p}_{3/2}
\end{array}
\]
Direct nucleon removal (or addition)

- Information regarding the ‘occupancy’ of single-particle states can be investigated within a model framework.
- Two energy regimes --> low-energy transfer experiments and intermediate energy knockout.

\[
\begin{align*}
\text{AZ}_N & \hspace{1cm} 28 \hspace{1cm} 20 \hspace{1cm} 8 \\
& \quad \text{d}^{5/2} \quad \text{d}^{3/2} \quad \text{s}^{1/2} \\
\text{A}^{-1}\text{Z}_{N-1} & \hspace{1cm} 28 \hspace{1cm} 20 \hspace{1cm} 8 \\
& \quad \text{d}^{5/2} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{p}^{3/2} \\
& \quad \text{f}^{7/2} \\
\end{align*}
\]
Direct nucleon removal (or addition)

- Information regarding the ‘occupancy’ of single-particle states can be investigated within a model framework
- Two energy regimes --> low-energy transfer experiments and intermediate energy knockout

\[
\begin{align*}
\text{Before:} & \quad A^Z_N \\
\text{After:} & \quad A^{-1}^Z_{N-1}
\end{align*}
\]
Direct nucleon removal (or addition)

- Information regarding the ‘occupancy’ of single-particle states can be investigated within a model framework
- Two energy regimes --> low-energy transfer experiments and intermediate energy knockout

$$A Z_N$$

$$A + 1 Z_{N+1}$$
Selectivity of the reaction mechanism

- Knockout / nucleon removal
- Fusion – evaporation
- Transfer
- Deep inelastic
- Scattering (elastic / inelastic)
- Capture
Fusion evaporation vs. direct transfer

- \(A + b = C \rightarrow D + X \)
 - \(^{12}\text{C}(^{18}\text{O},3\text{n})^{27}\text{Si}^\ast\)
- Compound system has NO memory of its formation
- Evaporated particle energies give excitation energies of final states
- Two-body \(A(b,c)D \)
 - \(^{16}\text{O}(d,p)^{17}\text{O}^\ast\)
- Outgoing particle DO retain knowledge of transferred particles
Knockout reaction vs. direct transfer

- A + b = c – Xn - Xp
 - $^9\text{Be}({}^{44}\text{S},-1p1n)^{42}\text{P}^*$
 - Momentum distribution of recoil reflects orbital momentum transfer

- Two-body A(b,c)D
 - $^{16}\text{O}(d,p)^{17}\text{O}^*$
 - Outgoing particle DO retain knowledge of transferred particles
Transfer reactions

Single-nucleon
- [e.g., (d,p), (\(^3\)He,d), (\(\alpha\),t)]
 - Single-particle states

Two-nucleon
- [e.g., (t,p), (\(^3\)He,p), (\(\alpha\),d)]
 - Pair transfer (2n, d, etc.)

Charge exchange
- [e.g., (p,n), (\(^3\)He,t), (t,\(^3\)He)]
 - Gamow Teller Strengths
 - Isobaric analog states

Surrogate reactions
- [e.g., (\(^6\)Li,d), (\(^7\)Li,t), (d,n)]
 - Mimics the analogous particle transfer

Heavy Ion
- [e.g., (\(^{13}\)C,\(^{12}\)C), (\(^{12}\)C,\(^{10}\)Be), (\(^{14}\)C,\(^{10}\)C)]
 - Highly selective
 - Exploratory
Transfer reactions: measured quantities

- Momenta and angles of outgoing light particles [or heavy-ion recoils]

Reaction: \(A(b,c)D\)
[e.g., \(^{208}\text{Pb}^{(3}\text{He},d)^{209}\text{Bi}\)]

\[
\text{BE}_D = M_D + E^*_D = \sqrt{M_c^2 + E_{cm}^2 - 2 \cdot E_{cm} \cdot E'_c}
\]

\[
E'_c = f(E_c, \theta_c)
\]

\[
Q = (\text{BE}_c + \text{BE}_D) - (\text{BE}_A + \text{BE}_b)
\]
Transfer reactions: measured quantities

\[[Q(g.s) = +2.92 \text{ MeV}] \]

\[\begin{align*}
48_{\text{Ca}} \text{(d,p)} 49_{\text{Ca}} \\
E_d &= 20.0 \text{ MeV} \\
\theta &= 57.5^\circ
\end{align*} \]

\[Q = (\text{BE}_C + \text{BE}_D) - (\text{BE}_A + \text{BE}_B) \]
Transfer reactions: measured quantities

Cross sections – Yields as a function of angle
[differential cross section: millibarns per ster radians (mb/sr)]

Rutherford Scattering
[V = Coulomb]
\[
\frac{d\sigma}{d\Omega} = \frac{(zZe^2)^2}{(4\pi\varepsilon_0)^2(4E_km)^2}\sin^4\left(\frac{\theta}{2}\right)
\]

Transfer Reaction
[V = Nuclear + Coulomb]
Cross section vs. incident beam energy
Transfer reactions: extracted quantities

Sensitivity of the differential cross sections to orbital angular momenta (l) of transferred nucleon(s)

Fig. 1. Theoretical angular distributions for (d,p) and (d,π) reactions for different angular momentum transfers to the initial nucleus.

- $l_n = 0$
- $l_n = 1$
- $l_n = 2$

$\sigma(\theta)$

$\frac{d\sigma}{d\Omega}$

θ in single-particle transfer [e.g., (d,p)]

l if incoming particle is polarized
[analyzing power]

L of pair in two-particle transfer [e.g., (t,p)]
Transfer reaction: extracted quantities

Experimental spectroscopic factor

[Relative values are typically reliable (<25%)]
[absolute values can be tricky (>30%)!]

\[S_{ij} = \frac{d\sigma}{d\Omega} \mid_{\text{Meas}} = g S_{ij} \frac{d\sigma}{d\Omega} \mid_{\text{DWBA}} \]

Statistical factor

Calculated cross section for “pure” single-particle like state

Amount of overlap between initial and final states
Spectroscopic Factor

\(^{18}\text{O}(d,p)^{18}\text{O} \text{ at } 10 \text{ MeV/u}\)

\(l = 0 \)
\(l = 2 \)
Low-energy transfer experiments

Detection systems depend on kinematics of the reaction
--> ‘normal kinematics’ with a light beam on a heavy target – spectrographs can analyze the light outgoing particle
--> ‘inverse kinematics’ with a heavy beam on a light target – detect the light outgoing particle, or analyze the beam-like particle
Nucleon knockout reactions

Intermediate energy beams (> 50 MeV/nucleon)
 - Sudden approximation + eikonal approach for reaction theory

Spectroscopic strengths --> exclusive cross-sections
 - Populated states in A-1 residue provide detailed measure of beam structure

Theoretical cross-section

$$
\sigma(j^\pi) = \left(\frac{A}{A-1}\right)^N C^2 S(j^\pi)\sigma_{sp}(j, S_N + E_x[j^\pi])
$$

Structure theory
Neutron knockout – $^{9}\text{Be}(^{34}\text{Ar},^{33}\text{Ar})X$

- ^{33}Ar

 - 1358(6) keV

 - 1795(7) keV

 - 2460(9) keV

Energy (keV)

Counts / 13 keV

<table>
<thead>
<tr>
<th>BR (%)</th>
<th>σ_{exp} (mb)</th>
<th>C^2S_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2^+$</td>
<td>30.2(46)</td>
<td>4.7(9)</td>
</tr>
<tr>
<td>$3/2^+$</td>
<td>20.2(44)</td>
<td>3.2(8)</td>
</tr>
<tr>
<td>$5/2^+$</td>
<td>31.7(31)</td>
<td>4.9(7)</td>
</tr>
<tr>
<td>$(5/2^+)$</td>
<td>17.9(30)</td>
<td>2.8(6)</td>
</tr>
</tbody>
</table>

A. Gade et al., PRC 69, 034311 (2004).
Excited state lifetimes
Lifetimes and transition probabilities

Transition probability for gamma-decay relates strongly to specific nuclear matrix elements --> provide a stringent test of theoretical wavefunctions

Consider the case of the first 2+ states in even-even nuclei

$$\tau_\gamma = 40.81 \times 10^{13} E^{-5} [B(E2) \uparrow/e^2b^2]^{-1}$$

$$B(E2 : J_i \rightarrow J_f) = \frac{1}{2J_i + 1} \langle \psi_f | E2 | \psi_i \rangle^2$$

Lifetimes are of order ps --> how do we measure these lifetimes?
The lifetime of excited states in the range of 10-100s of ps can be measured by populating the state via Coulomb excitation or knock-out reactions, and observing the Doppler-shift of the decay gamma-ray.

Figure: Adapted from K. Starosta
Lifetime in 72,74Kr

Lifetimes are related to the reduced transition probabilities $B(E2)$, which are an indicator for collectivity in the nuclear structure.

Here, the irregular behaviour for the 4+ and 2+ states suggest a rapid shape evolution in 72Kr

Coulomb excitation
Collectivity: \(B(E2) \) from excitation probability

Coulomb excitation:
- purely Coulomb interaction causes excitation of the nucleus of interest
- well described interaction, and cross-section relates to transition matrix element, i.e. \(B(E2) \) for \(0^+ \rightarrow 2^+ \) in even-even nuclei.

\[
\sigma_{\pi\lambda} \approx \left(\frac{Z_{\text{pro}}e^2}{\hbar c} \right)^2 \frac{\pi}{e^2b_{\text{min}}^{2\lambda-2}} B(\pi\lambda, 0 \rightarrow \lambda) \begin{cases}
\frac{1}{(\lambda - 1)} & \text{for } \lambda \geq 2 \\
2\ln(b_{\text{a}}/b_{\text{min}}) & \text{for } \lambda = 1
\end{cases}
\]
Pear shaped nuclei and atomic EDM

\[\langle I' | E_\lambda | I \rangle = \sqrt{(2I' + 1)(2\lambda + 1) / 16\pi I'0\lambda0|I0} Q_\lambda \]

Intermediate-energy Coulex

- In conventional (low-energy) Coulomb excitation, bombarding energies are well below the Coulomb barrier
- At high energies (~100 MeV/A), nuclear contribution can be significant for small impact parameters, but for b > R_{int} Coulomb dominates

- At a given beam velocity, b relates to the scattering angle \(\theta \), so restricting analysis to forward scattering angles ensures ‘safe’ Coulex
Neutron-rich Fe and Cr

And what have I skipped?

- ‘Exotic’ decay modes
 - 1p and 2p decay at the proton dripline
 - Neutron decay --> recent sequential 2n decay at NSCL
- Resonance spectroscopy – properties of unbound states (beyond the proton and neutron driplines)
- Reactions for spectroscopy and more --> deep inelastic reactions, multi-nucleon transfer, charge-exchange, etc.
- And much, much more...
Example: Designing an experiment to access the physics
We read this theory paper...

J.D. Holt, J. Menendez, A. Schwenk, private communication.
Can we inform this physics question?

• Theory tells us there is a difference in spectroscopic factor for removal of neutrons in \(^{50}\text{Ca}\) to states in \(^{49}\text{Ca}\)

 o Is this observable? Can we design a measurement to test the different predictions? What could we do? What would our experiment observables be?

 o Where could we do this type of experiment? What facility could we use? What type of equipment?

 o What exactly would we **measure**? How would we have to interpret the data? Do we need theory to interpret the data?