Rare Isotope Experiments with n-rich nuclei

Motivation: the origin of the heavy elements
r-rich (Eu) rich, s-poor star: Main r-process

- Sneden et al. 2003

r- poor, s - poor star: ??

- Honda et al. 2006 (Travaglio et al. 2004, Montes et al. 2008)

LEPP HD 122563

CS 22892-052

Find more such stars?

- Only 1:1.2 Mio halo stars r-process element enhanced
- Ongoing Surveys (e.g. SEGUE at Apache Point) might find 1000s of stars in relevant metallicity range
 → Will obtain a fossil record of chemical evolution
Nuclear masses in the r-process

Temperature: ~1-2 GK
Density: 300 g/cm³ (~60% neutrons !) neutron capture timescale: ~ 0.2 µs

Rapid neutron capture

(γ,n) photodisintegration

β-decay

Equilibrium favors “waiting point”
A possible pathway of the r-process

Nucleosynthesis in the r-process

Compare calculated results with abundance observations?

→ Masses, half-lives, n-capture rates of very unstable, exotic nuclei need to be known

→ Need experiments and nuclear theory
New neutron star merger simulations

Korobkin et al. 2012

→ Breakthrough: Find robust r-process with no parameter tuning!
→ Have astronomical data that demonstrate robustness!
→ Wish we had the nuclear data to really test the model …
Rare earth peak – diagnostics of freezeout

r-process model calculations with different nuclear masses:

→ With experimental nuclear masses we could test r-process models

M. Mumpower et al. 2012
Recent r-process related experiments

Mass measurements (need 1:10^6)

- Penning Traps
- TOF (spectrometers, storage rings)

- ANL Trap
- Jyvaskyla Trap
- GSI ESR Ring
- TRIUMF Trap
- CERN/ISOLDE Trap
- NSCL TOF
- ORNL T_1/2_P_n
- RIKEN T_1/2
- CERN/ISOLDE T_1/2_P_n

Neutron capture rates:
- use transfer such as (d,p)
- ORNL (d,p)

Seed producing reaction rates:
- ^9Be(γ,n) with HlgS Neutrino physics

Future facility reach (FRIB)

β-decay studies:
- RIKEN T_1/2
- CERN/ISOLDE T_1/2_P_n
- ORNL T_1/2_P_n
- NSCL T_1/2_P_n
- GSI/Mainz T_1/2_P_n
- TRIUMF Trap
- Jyvaskyla Trap
- ANL Trap
- N=50
- N=82
- N=126
Fragmentation production of rare isotopes
$B\rho$ selection separates m/q

\[
B\rho = \frac{p}{q} = \frac{m}{q} \gamma v \quad \text{so for production at fixed velocity } v \ B\rho \sim m/q
\]
Example: $^{86}\text{Kr} \rightarrow ^{78}\text{Ni}$

Fragment yield after Br selection
Example: $^{86}\text{Kr} \rightarrow ^{78}\text{Ni}$

Fragment yield after Br selection

Fragment yield at focal plane
A1900 Fragment Separator
Event by event particle identification

Ion Source: 86Kr beam

86Kr beam 140 MeV/u

Tracking

Measure p/q by tracking at dispersive focus

$\frac{p}{q} = B \rho$

Time of flight measurement

Combine with TOF velocity measurement

$\frac{p}{qv\gamma} = \frac{m}{q}$ get m/q

Energy loss measurement

Measure energy loss in Si detector

$\Delta E \sim \frac{Z^2}{v^2}$ get Z

Implant beam in detector and observe decay

K1200 K500

gas catcher

4 pi

sweeper

neutron walls

S800

superball

A1900

RPMS
Particle Identification

78Ni
Doubly Magic!
(σ~20 fb)
11 per week
FRIB: 50 per second!

Fast RIB from fragmentation:
• no decay losses
• any beam can be produced
• multiple measurements in one
• high sensitivity 1:1014
Search for new isotopes – an example

<table>
<thead>
<tr>
<th>36Ca</th>
<th>37Ca</th>
<th>38Ca</th>
<th>39Ca</th>
<th>40Ca</th>
<th>41Ca</th>
<th>42Ca</th>
<th>43Ca</th>
<th>44Ca</th>
<th>45Ca</th>
<th>46Ca</th>
<th>47Ca</th>
<th>48Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>35K</td>
<td>36K</td>
<td>37K</td>
<td>39K</td>
<td>40K</td>
<td>41K</td>
<td>42K</td>
<td>43K</td>
<td>44K</td>
<td>45K</td>
<td>46K</td>
<td>47K</td>
<td></td>
</tr>
<tr>
<td>34Ar</td>
<td>35Ar</td>
<td>36Ar</td>
<td>37Ar</td>
<td>39Ar</td>
<td>40Ar</td>
<td>41Ar</td>
<td>42Ar</td>
<td>43Ar</td>
<td>44Ar</td>
<td>45Ar</td>
<td>46Ar</td>
<td></td>
</tr>
<tr>
<td>33Cl</td>
<td>34Cl</td>
<td>35Cl</td>
<td>36Cl</td>
<td>37Cl</td>
<td>39Cl</td>
<td>40Cl</td>
<td>41Cl</td>
<td>42Cl</td>
<td>43Cl</td>
<td>44Cl</td>
<td>45Cl</td>
<td></td>
</tr>
<tr>
<td>32S</td>
<td>33S</td>
<td>34S</td>
<td>35S</td>
<td>36S</td>
<td>38S</td>
<td>39S</td>
<td>40S</td>
<td>41S</td>
<td>42S</td>
<td>43S</td>
<td>44S</td>
<td></td>
</tr>
<tr>
<td>31P</td>
<td>32P</td>
<td>33P</td>
<td>34P</td>
<td>35P</td>
<td>36P</td>
<td>37P</td>
<td>38P</td>
<td>39P</td>
<td>40P</td>
<td>41P</td>
<td>42P</td>
<td>43P</td>
</tr>
<tr>
<td>30Si</td>
<td>31Si</td>
<td>32Si</td>
<td>33Si</td>
<td>34Si</td>
<td>35Si</td>
<td>36Si</td>
<td>37Si</td>
<td>38Si</td>
<td>39Si</td>
<td>40Si</td>
<td>41Si</td>
<td>42Si</td>
</tr>
<tr>
<td>29Al</td>
<td>30Al</td>
<td>31Al</td>
<td>32Al</td>
<td>33Al</td>
<td>35Al</td>
<td>36Al</td>
<td>37Al</td>
<td>38Al</td>
<td>39Al</td>
<td>40Al</td>
<td>41Al</td>
<td></td>
</tr>
<tr>
<td>28Mg</td>
<td>29Mg</td>
<td>30Mg</td>
<td>31Mg</td>
<td>32Mg</td>
<td>33Mg</td>
<td>34Mg</td>
<td>35Mg</td>
<td>36Mg</td>
<td>37Mg</td>
<td>38Mg</td>
<td>40Mg</td>
<td></td>
</tr>
<tr>
<td>27Na</td>
<td>28Na</td>
<td>29Na</td>
<td>30Na</td>
<td>31Na</td>
<td>32Na</td>
<td>33Na</td>
<td>34Na</td>
<td>35Na</td>
<td>37Na</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26Ne</td>
<td>27Ne</td>
<td>28Ne</td>
<td>29Ne</td>
<td>30Ne</td>
<td>31Ne</td>
<td>32Ne</td>
<td>34Ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25F</td>
<td>26F</td>
<td>27F</td>
<td>29F</td>
<td>31F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24O</td>
<td>26O</td>
<td>28O</td>
<td></td>
</tr>
</tbody>
</table>

- Flight time of the order of 100s of ns. This requires neutron bound!

Observation -> n-bound

Non-observation -> n-unbound (if production sufficient)

- The dripline is a benchmark that all nuclear models can be measured against

- Sensitive to aspects of the nuclear force

1990: Guillemaud-Mueller et al., Z. Phys. A 332, 189

Lukyanov et al., J. Phys. G 28, L41

The existence of $^{42,43}\text{Al}$ indicates that the neutron dripline might be much further out than predicted by most of the present theoretical models, certainly out of reach at present generation facilities.
New NSCL Neutron detector NERO

Measure:
- β-decay half-lives
- Branchings for β-delayed n-emission

Detect:
- Particle type (TOF, dE, p)
- Implantation time and location
- β-emission time and location
- neutron-β coincidences

NERO efficiency: 30-38% for <2 MeV
• 4 cm x 4 cm active area
• 1 mm thick
• 40-strip pitch in x and y dimensions ->1600 pixels
NERO – Neutron Emission Ratio Observer

Specifications:
- 60 counters total (16 3He, 44 BF$_3$)
- 60 cm x 60 cm x 80 cm polyethylene block
- Extensive exterior shielding
- 43% total neutron efficiency (MCNP)
Result for half-life: 110 $^{+100}_{-60}$ ms

Compare to theoretical estimate used: 470 ms
New data by Winger et al. PRL 102, 142502 (2009)

\[
\begin{align*}
\nu \rho_{1/2} & \quad 5/2^- & \quad 1.5 \\
\nu f_{3/2} & \quad 1/2^- & \quad 0.46 \\
\nu \rho_{3/2} & \quad 3/2^- & \quad 1.3
\end{align*}
\]

\[\begin{align*}
69\text{Cu}_{40} & \quad 71\text{Cu}_{42} & \quad 73\text{Cu}_{44}
\end{align*}\]

Results (Hosmer et al. 2005, Hosmer et al. to be published)

From talk by Georgiev 2009:

Evidence for 5/2^- gs for ^{75}Cu, ^{77}Cu (Walters, Flanagan private communication)

Nuclear masses in the r-process

Temperature: ~1-2 GK
Density: 300 g/cm³ (~60% neutrons !) neutron capture timescale: ~ 0.2 µs

Rapid neutron capture β-decay

Seed (γ,n) photodisintegration Equilibrium favors “waiting point”

Proton number Neutron number
In equilibrium abundance ratios in isotopic chain:

\[
\frac{Y(Z, A+1)}{Y(Z, A)} = n_n \frac{G(Z, A+1)}{2G(Z, A)} \left[\frac{A+1}{A} \frac{2\pi\hbar^2}{m_u kT} \right]^{3/2} \exp\left(\frac{S_n}{kT} \right)
\]

Exponential dependence on neutron separation energy

\[S_n = m(Z,A)+m_n-m(Z,A+1) \]

\[\rightarrow \text{Need masses to precision of } kT \sim 100 \text{ keV for } \sim 1-2 \text{ GK} \]

\[\rightarrow \text{For } A=100 \text{ this is } 10^{-6} \]
Contains information about:
- n-density, T, time (fission signatures)
- freezeout
- neutrino presence
- which model is correct

But convoluted with nuclear physics:
- masses (set path)
- \(T_{1/2}, Pn \) (\(Y \sim T_{1/2_{prog}} \)), key waiting points set timescale
- n-capture rates
- fission barriers and fragments
Trends of the mass surface

From isotopic Sn difference: need mass uncertainty << 200 keV
For identification of “humps” << 1 MeV (10^-5 precision)
Measurement of Nuclear Masses: Precision need

\[m(Z, N) = Zm_p + Nm_n - B / c^2 \]

\(m_p, m_n \sim 940 \text{ MeV} \)

\(B < 9 \text{ MeV/u} \)

\(\rightarrow \) Just counting Protons and Neutrons gives mass to 1%

\(\rightarrow \) Need 4 orders of magnitude more Precision!
What about mass models?
Penning Trap Mass Measurements (stopped beams)

\[f_c = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B \]

- **Cyclotron frequency**
- **PENNING trap**
 - Strong homogen. magnetic field
 - Weak electric 3D quadrupole field

Typical freq.
- \(q = e \)
- \(m = 100 \text{ u} \)
- \(B = 6 \text{ T} \)

\[\Rightarrow f_+ \approx 1 \text{ kHz} \]
\[f_- \approx 1 \text{ MHz} \]
Example: TRIGA Penning Trap (Mainz)
Example Results

JYFLTRAP (Hakala et al. 2008)

![Time of Flight Graph](image)

- \(^{83}\text{Ga}^+\)
- \(T_{1/2} = 300\,\text{ms}\)

ISOLTRAP (Baruah et al. 2008)

![Neutron Separation Energy Graph](image)

- Zn masses out to \(^{81}\text{Zn}\)
- Error: 2-5 keV
- (~10\(^{-7}\) to 10\(^{-8}\) precision)
- (and accuracy!)
The r-process at A=80

Precision masses from ion traps

Known n-emission branchings

> Unique region where main nuclear physics for the r-process is now experimentally constrained

Network calculation: when is 80Zn a waiting point?

Baruah et al. 2008
Example: Impact of Zn mass measurements

conditions for >90% β-branch (^{80}Zn is waiting point)

Precision masses up to ^{80}Zn

Precision masses up to ^{81}Zn
Mass measurements of very neutron rich nuclei

$\sigma \sim 30$ ps

MSU/ORNL coll.
Matos, Estrade, …
George, Carpino, Meisel, …

Isotopes identified in one experiment

<table>
<thead>
<tr>
<th>N</th>
<th>53Sc</th>
<th>54Sc</th>
<th>55Sc</th>
<th>57Ti</th>
<th>58Ti</th>
<th>60V</th>
<th>61V</th>
<th>63Cr</th>
<th>65Mn</th>
<th>66Mn</th>
<th>67Fe</th>
<th>68Fe</th>
<th>70Co</th>
<th>71Co</th>
<th>74Ni</th>
<th>77Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>76Zn</td>
<td>-38150 (240)</td>
<td>-37630 (280#)</td>
<td>-37630 (280#)</td>
<td>-37930 (180)</td>
<td></td>
</tr>
<tr>
<td>79Ga</td>
<td>-33590 (330)</td>
<td>-34190 (370)</td>
<td>-34190 (370)</td>
<td>-33860 (250)</td>
<td></td>
</tr>
<tr>
<td>82Ge</td>
<td>-30320 (540)</td>
<td>-29620 (750)</td>
<td>-29620 (750)</td>
<td>-30080 (440)</td>
<td></td>
</tr>
<tr>
<td>77Zn</td>
<td>-33820 (310)</td>
<td>-33530 (470)</td>
<td>-33530 (470)</td>
<td>-33730 (260)</td>
<td></td>
</tr>
<tr>
<td>80Ga</td>
<td>-29740 (800)</td>
<td>-29740 (800)</td>
<td>-29740 (800)</td>
<td>-29740 (800)</td>
<td></td>
</tr>
<tr>
<td>83Ga</td>
<td>-30300 (350)</td>
<td>-32000 (470)</td>
<td>-32000 (470)</td>
<td>-32870 (280)</td>
<td></td>
</tr>
<tr>
<td>80Zn</td>
<td>-30910 (940)</td>
<td>-30910 (940)</td>
<td>-30910 (940)</td>
<td>-30910 (940)</td>
<td></td>
</tr>
<tr>
<td>76Co</td>
<td>-35270 (600)</td>
<td>-35270 (600)</td>
<td>-35270 (600)</td>
<td>-35270 (600)</td>
<td></td>
</tr>
<tr>
<td>79Ni</td>
<td>-40730 (280)</td>
<td>-40710 (560)</td>
<td>-40710 (560)</td>
<td>-40710 (560)</td>
<td></td>
</tr>
<tr>
<td>82Ni</td>
<td>-40730 (280)</td>
<td>-40710 (560)</td>
<td>-40710 (560)</td>
<td>-40710 (560)</td>
<td></td>
</tr>
<tr>
<td>85Zn</td>
<td>-36890 (770)</td>
<td>-36890 (770)</td>
<td>-36890 (770)</td>
<td>-36890 (770)</td>
<td></td>
</tr>
<tr>
<td>75Cu</td>
<td>-45880 (220)</td>
<td>-45740 (370)</td>
<td>-45740 (370)</td>
<td>-45840 (190)</td>
<td></td>
</tr>
<tr>
<td>76Zn</td>
<td>-44010 (390)</td>
<td>-44130 (750)</td>
<td>-44130 (750)</td>
<td>-43830 (340)</td>
<td></td>
</tr>
<tr>
<td>77Cu</td>
<td>-46720 (250)</td>
<td>-45640 (840)</td>
<td>-45640 (840)</td>
<td>-46640 (240)</td>
<td></td>
</tr>
<tr>
<td>71Ni</td>
<td>-44530 (510)</td>
<td>-43870 (840)</td>
<td>-43870 (840)</td>
<td>-44360 (430)</td>
<td></td>
</tr>
<tr>
<td>74Ni</td>
<td>-49390 (1040)</td>
<td>-49390 (1040)</td>
<td>-49390 (1040)</td>
<td>-49390 (1040)</td>
<td></td>
</tr>
<tr>
<td>86Kr</td>
<td>-46940 (1390)</td>
<td>-46940 (1390)</td>
<td>-46940 (1390)</td>
<td>-46940 (1390)</td>
<td></td>
</tr>
</tbody>
</table>
Discriminate mass models

Q_{EC} for $A=66$ chain (difference to FRDM)

Impact on crustal heating

Integrated heat release for superburst ashes

Masses in neutron star crust models

66Ni \rightarrow 66Fe

66Fe \rightarrow 66Cl

Less heating

Shallower heating
How to measure neutron capture on unstable nuclei?

\[n + A \rightarrow B + \gamma \]

Direct transition from initial state \(|n+A\rangle\) to final state \(<f|\) in B

\[\sigma \propto \pi \lambda_a^2 \cdot \left| \langle f \middle| H \middle| n + A \rangle \right|^2 \cdot P_l(E) \]

- Geometrical factor (deBroglie wave length of projectile - “size” of projectile)
 \[\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} \]

- Interaction matrix element

- Penetrability: probability for projectile to reach the target nucleus for interaction. Depends on projectile Angular momentum \(l\) and Energy \(E\)

“Same” for neutron transfer: \(A + d \rightarrow B + p\)

BUT: might probe different parts of wave function at different energies
Neutron transfer reaction measurements at HRIBF at ORNL (K. Jones, J. Ciezczewski, et al.)
The magic nature of 132Sn explored through the single-particle states of 133Sn

r-rich (Eu) rich, s-poor star: Main r-process

Sneden et al. 2003

solar r-process

r-poor, s-poor star: ??
(Travaglio et al. 2004, Montes et al. 2008)

HD 122563

Honda et al. 2006

Major progress in astronomy – new processes found!

Find more such stars?
- Only 1:1.2 Mio halo stars r-process element enhanced
- Ongoing Surveys (e.g. SEGUE at Apache Point) might find 1000s of stars in relevant metallicity range
 → Will obtain a fossil record of chemical evolution
Contains information about:

- n-density, T, time (fission signatures)
- freezeout
- neutrino presence
- which model is correct

But convoluted with nuclear physics:

- masses (set path)
- $T_{1/2}$, $P_n (Y \sim T_{1/2}^{\text{prog}})$, key waiting points set timescale)
- n-capture rates
- fission barriers and fragments