QCD Phenomenology and Nucleon Structure

Stan Brodsky, SLAC

Lecture V

National Nuclear Physics Summer School
QCD: $N_C = 3$
Quarks: 3_C
Gluons: 8_C.

$\alpha_s = \frac{g^2}{4\pi}$ is dimensionless

Classical Lagrangian is scale invariant for massless quarks

If $\beta = \frac{d\alpha_s(Q^2)}{d\log Q^2} = 0$ then QCD is invariant under conformal transformations:

Parisi
Conformal symmetry: Template for QCD

- Initial approximation to PQCD; then correct for non-zero beta function and quark masses

- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation

- Arguments for Infrared fixed-point for α_s (Alhofer, et al.)

- Effective Charges: analytic at quark mass thresholds, finite at small momenta

- Eigensolutions of Evolution Equation of distribution amplitudes
The Renormalization Scale Problem

\[\rho = C_1 \alpha_s(\mu_R) + C_2 \alpha_s^2(\mu_R) + C_3 \alpha_s^3(\mu_R) + \cdots \]

How does one set the renormalization scale \(\mu_R \)?
Electron-Electron Scattering in QED

\[M_{ee\rightarrow ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u) \]

- No renormalization scale ambiguity!
- Two separate physical scales.
- Gauge Invariant. Dressed photon propagator
- Sums all vacuum polarization, non-zero beta terms into running coupling.
- If one chooses a different scale, one must sum an infinite number of graphs -- but then recover same result!
- Number of active leptons correctly set

\[\text{Analytic: reproduces correct behavior at lepton mass thresholds} \]
$e^+e^- \rightarrow \mu^+\mu^-$

Scale of $\alpha(\mu_r)$ unique!

$\mu^2_R = s$

$M \propto \alpha(s)$

The QED Effective Charge

• Complex
• Analytic through mass thresholds
• Distinguishes between timelike and spacelike momenta

Analyticity essential!
The Renormalization Scale Problem

- No renormalization scale ambiguity in QED

- Gell Mann-Low-Dyson QED Coupling defined from physical observable;

- Sums all Vacuum Polarization Contributions

- Recover conformal series

- Renormalization Scale in QED scheme: Identical to Photon Virtuality

- Analytic: Reproduces lepton-pair thresholds

- Examples: muonic atoms, g-2, Lamb Shift

- Time-like and Space-like QED Coupling related by analyticity

- Uses Dressed Skeleton Expansion
Lessons from QED: Summary

• Effective couplings are complex analytic functions with the correct threshold structure expected from unitarity

• Multiple “renormalization” scales appear

• The scales are unambiguous since they are physical kinematic invariants

• Optimal improvement of perturbation theory
BLM Scale Setting

\[\rho = C_0 \alpha_{\overline{\text{MS}}}(Q) \left[1 + \frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi} \left(-\frac{3}{2} \beta_0 A_{VP} + \frac{33}{2} A_{VP} + B \right) + \cdots \right] \]

by

\[\rho = C_0 \alpha_{\overline{\text{MS}}}(Q^*) \left[1 + \frac{\alpha_{\overline{\text{MS}}}(Q^*)}{\pi} C_1^* + \cdots \right], \]

where

\[Q^* = Q \exp(3A_{VP}) , \]

\[C_1^* = \frac{33}{2} A_{VP} + B . \]

The term \(33A_{VP}/2 \) in \(C_1^* \) serves to remove that part of the constant \(B \) which renormalizes the leading-order coupling. The ratio of these gluonic corrections to the light-quark corrections is fixed by \(\beta_0 = 11 - \frac{2}{3} n_f \).

Use \(n_f \) dependence at NLO to identify \(A_{VP} \)

Use skeleton expansion: Gardi, Rathsman, sjb

Conformal Coefficient

QCD Phenomenology

Stan Brodsky, SLAC
\[R_{e^+e^-}(Q^2) \equiv 3 \sum_{\text{flavors}} e_q^2 \left[1 + \frac{\alpha_R(Q)}{\pi} \right]. \]

\[R_{e^+e^-}(Q^2) = 3 \sum_q e_q^2 \left[1 + \frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2}{\pi^2} (1.98 - 0.115n_f) \right] + \cdots \]

\[\rightarrow 3 \sum_q e_q^2 \left[1 + \frac{\alpha_{\overline{\text{MS}}}(Q^*)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2(Q^*)}{\pi^2} 0.08 \right] + \cdots , \]

\[Q^* = 0.710Q. \]

Notice that \(\alpha_R(Q) \) differs from \(\alpha_{\overline{\text{MS}}}(Q^*) \) by only \(0.08\alpha_{\overline{\text{MS}}}/\pi \), so that \(\alpha_R(Q) \) and \(\alpha_{\overline{\text{MS}}}(0.71Q) \) are effectively interchangeable (for any value of \(n_f \)).
\[V(Q^2) = -\frac{C_F 4\pi \alpha_{\overline{MS}}(Q)}{Q^2} \left[1 + \frac{\alpha_{\overline{MS}}}{\pi} \left(\frac{5}{12} \beta_0 - 2 \right) + \cdots \right] \]

\[\rightarrow -\frac{C_F 4\pi \alpha_{\overline{MS}}(Q^*)}{Q^2} \left[1 - \frac{\alpha_{\overline{MS}}(Q^*)}{\pi} 2 + \cdots \right], \]

where \(Q^* = e^{-5/6}, Q \approx 0.43 Q \). This result shows that the effective scale of the \(\overline{MS} \) scheme should generally be about half of the true momentum transfer occurring in the interaction. In parallel to QED, the effective potential \(V(Q^2) \) gives a particularly intuitive scheme for defining the QCD coupling constant

\[V(Q^2) \equiv -\frac{4\pi C_F \alpha_v(Q)}{Q^2} \]
Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Lepage, Mackenzie, sjb

- All terms associated with nonzero beta function summed into running coupling
- BLM Scale Q^* sets the number of active flavors
- Only n_f dependence required to determine renormalization scale at NLO
- Result is scheme independent: Q^* has exactly the correct dependence to compensate for change of scheme
- Correct Abelian limit

- **Resulting series identical to conformal series!**
- Renormalon $n!$ growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants
Deep-inelastic scattering. The moments of the nonsinglet structure function $F_2(x,Q^2)$ obey the evolution equation

$$Q^2 \frac{d}{dQ^2} \ln M_n(Q^2)$$

$$= - \frac{\gamma_n^{(0)}}{8\pi} \alpha_{\text{MS}}(Q) \left[1 + \frac{\alpha_{\text{MS}}}{4\pi} \frac{2\beta_0 \beta_n + \gamma_n^{(1)}}{\gamma_n^{(0)}} + \cdots \right]$$

$$\rightarrow - \frac{\gamma_n^{(0)}}{8\pi} \alpha_{\text{MS}}(Q_n^*) \left[1 - \frac{\alpha_{\text{MS}}(Q_n^*)}{\pi} C_n + \cdots \right],$$

where, for example,

$$Q_2^* = 0.48Q, \quad C_2 = 0.27,$$

$$Q_{10}^* = 0.21Q, \quad C_{10} = 1.1.$$

For n very large, the effective scale here becomes $Q_n^* \sim Q/\sqrt{n}$

BLM scales for DIS moments
Three-Jet Rate

The scale μ/\sqrt{s} according to the BLM (dashed-dotted), PMS (dashed), FAC (full), and \sqrt{y} (dotted) procedures for the three-jet rate in e^+e^- annihilation, as computed by Kramer and Lampe [10]. Notice the strikingly different behavior of the BLM scale from the PMS and FAC scales at low y. In particular, the latter two methods predict increasing values of μ as the jet invariant mass $M < \sqrt{(ys)}$ decreases.

Other Jet Observables:

Kramer & Lampe

Rathsman

QCD Phenomenology

Stan Brodsky, SLAC
\[V(Q^2) = - \frac{C_F 4\pi \alpha_{\overline{\text{MS}}}(Q)}{Q^2} \left[1 + \frac{\alpha_{\overline{\text{MS}}}}{\pi} \left(\frac{5}{12} \beta_0 - 2 \right) + \cdots \right] \]

\[\rightarrow - \frac{C_F 4\pi \alpha_{\overline{\text{MS}}}(Q^*)}{Q^2} \left[1 - \frac{\alpha_{\overline{\text{MS}}}(Q^*)}{\pi} 2 + \cdots \right], \]

where \(Q^* = e^{-5/6} Q \approx 0.43 Q \). This result shows that the effective scale of the \(\overline{\text{MS}} \) scheme should generally be about half of the true momentum transfer occurring in the interaction. In parallel to QED, the effective potential \(V(Q^2) \) gives a particularly intuitive scheme for defining the QCD coupling constant

\[V(Q^2) \equiv - \frac{4\pi C_F \alpha_v(Q)}{Q^2} \]
The unperturbed effective weak hamiltonian is
\[H = \sum_{i} J_{i} J_{i}^* \]
(1)

of \(o_{q} (Q^2) \). The disconnected diagram vanishes after integration with collinear meson distribution amplitudes.

\[\rho = C_1 \alpha_s(\mu_R) + C_2 \alpha^2_s(\mu_R) + C_3 \alpha^3_s(\mu_R) + \cdots \]

\[\alpha_{MS}(e^{-5/3Q^2}) \]

Multiple BLM scales

\[\begin{align*}
B &\rightarrow \pi \ell \bar{\nu} \\
B &\rightarrow \pi \pi
\end{align*} \]
Features of BLM Scale Setting

- All terms associated with nonzero beta function summed into running coupling
- Conformal series preserved
- BLM Scale Q^* sets the number of active flavors
- Correct analytic dependence in the quark mass
- Only n_f dependence required to determine renormalization scale at NLO
- Result is scheme independent: Q^* has exactly the correct dependence to compensate for change of scheme
- Correct Abelian limit!
\[\lim_{N_C \to 0} \text{ at fixed } \alpha = C_F \alpha_s, \quad n_\ell = n_F / C_F \]

QCD \rightarrow \text{ Abelian Gauge Theory}

Analytic Feature of \(SU(N_c) \) Gauge Theory

Huet, sjb
Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation
\[\frac{\alpha_R(Q)}{\pi} = \frac{\alpha_{\text{MS}}(Q)}{\pi} + \left(\frac{\alpha_{\text{MS}}(Q)}{\pi} \right)^2 \left[\left(\frac{41}{8} - \frac{11}{3} \zeta_3 \right) C_A - \frac{1}{8} C_F + \left(-\frac{11}{12} + \frac{2}{3} \zeta_3 \right) f \right] \\
+ \left(\frac{\alpha_{\text{MS}}(Q)}{\pi} \right)^3 \left\{ \left(\frac{90445}{2592} - \frac{2737}{108} \zeta_3 - \frac{55}{18} \zeta_5 - \frac{121}{432} \pi^2 \right) C_A^2 + \left(-\frac{127}{48} - \frac{143}{12} \zeta_3 + \frac{55}{3} \zeta_5 \right) C_A C_F - \frac{23}{32} C_F^2 \right. \\
+ \left[\left(-\frac{970}{81} + \frac{224}{27} \zeta_3 + \frac{5}{9} \zeta_5 + \frac{11}{108} \pi^2 \right) C_A + \left(-\frac{29}{96} + \frac{19}{6} \zeta_3 - \frac{10}{3} \zeta_5 \right) C_F \right] f \\
+ \left(\frac{151}{162} - \frac{19}{27} \zeta_3 - \frac{1}{108} \pi^2 \right) f^2 + \left(\frac{11}{144} - \frac{1}{6} \zeta_3 \right) d_{abc} d_{abc} \left(\frac{\sum_f Q_f}{C_F d(R)} \right)^2 \left(\frac{\sum_f Q_f^2}{\sum_f Q_f^2} \right) \right\}. \]

\[\frac{\alpha_{g1}(Q)}{\pi} = \frac{\alpha_{\text{MS}}(Q)}{\pi} + \left(\frac{\alpha_{\text{MS}}(Q)}{\pi} \right)^2 \left[\frac{23}{12} C_A - \frac{7}{8} C_F - \frac{1}{3} f \right] \\
+ \left(\frac{\alpha_{\text{MS}}(Q)}{\pi} \right)^3 \left\{ \left(\frac{5437}{648} - \frac{55}{18} \zeta_5 \right) C_A^2 + \left(-\frac{1241}{432} + \frac{11}{9} \zeta_3 \right) C_A C_F + \frac{1}{32} C_F^2 \right. \\
+ \left[\left(-\frac{3535}{1296} - \frac{1}{2} \zeta_3 + \frac{5}{9} \zeta_5 \right) C_A + \left(\frac{133}{864} + \frac{5}{18} \zeta_3 \right) C_F \right] f + \frac{115}{648} f^2 \left\} \right. \]
\[
\int_0^1 dx \left[g_{1}^{ep}(x, Q^2) - g_{1}^{en}(x, Q^2) \right] \equiv \frac{1}{3} \left| \frac{g_A}{g_V} \right| \left[1 - \frac{\alpha g_1(Q)}{\pi} \right]
\]

\[
\frac{\alpha g_1(Q)}{\pi} = \frac{\alpha_R(Q^*)}{\pi} - \left(\frac{\alpha_R(Q^{**})}{\pi} \right)^2 + \left(\frac{\alpha_R(Q^{***})}{\pi} \right)^3
\]

Geometric Series in Conformal QCD

Generalized Crewther Relation

add Light-by-Light

Lu, Kataev, Gabadadze, Sjb

NNPSS
July 2006

QCD Phenomenology

Stan Brodsky, SLAC
Generalized Crewther Relation

\[[1 + \frac{\alpha_R(s^*)}{\pi}][1 - \frac{\alpha g_1(q^2)}{\pi}] = 1 \]

\[\sqrt{s^*} \approx 0.52Q \]

Conformal relation true to all orders in perturbation theory
Transitivity property - Renormalization Group

A → C → B
same as A → B

indep of C

Relation between observables A ↔ B
independent of choice of C and scheme or
theoretical convention.

PMS violates transitivity
Commensurate Scale Relation:

\[\alpha_s(Q_B) = \alpha_s(Q_A) \left[1 + C_{A/B} \frac{\alpha_s}{\pi} + \ldots \right] \]

\[\frac{Q_B}{Q_A} = \lambda B/A \]

Peterson\hspace{1cm}\begin{align*}
\frac{\lambda B/A}{\lambda B/C} &= \frac{\lambda A/C}{\lambda A/B} \\
\frac{\lambda B/A}{\lambda A/B} &= 1
\end{align*}\hspace{1cm} \text{transverse symmetry}

Süßclenberg

Renormalization "Group"

\[\frac{\lambda A/B}{\lambda A/B} = 1 \hspace{1cm} \text{identity} \]
Leading Order Commensurate Scales

\[
\begin{align*}
\alpha_{\tau}(1.36Q) & \quad \alpha_{\tau}(2.77Q) \\
\alpha_{\eta_b}(1.67Q) & \quad \alpha_{p}(Q) \\
\alpha_{GLS}(1.18Q) & \quad \alpha_{M_2}(0.904Q) \\
\alpha_{MS}(0.435Q) & \quad \alpha_{R}(0.614Q) \\
\alpha_{g_1}(1.18Q) &
\end{align*}
\]

Translate between schemes at LO

QCD Phenomenology

NNPSS
July 2006

Stan Brodsky, SLAC

25
Production of four heavy-quark jets

\[e^+ \rightarrow \gamma^* \rightarrow Q\bar{Q}Q\bar{Q} \]

Defines analytic QCD effective charge

\[T(\gamma^* \rightarrow Q\bar{Q}Q\bar{Q}) \propto \alpha_{4Q}(k_g^2) \]

time-like values not same as space-like

coupling similar to “pinch” scheme

complex for time-like argument
Conventional renormalization scale-setting method:

- Guess arbitrary renormalization scale and take arbitrary range. Wrong for QED and Precision Electroweak.
- Prediction depends on choice of renormalization scheme
- Variation of result with respect to renormalization scale only sensitive to nonconformal terms; no information on genuine (conformal) higher order terms
- Conventional procedure has no scientific basis.
- FAC and PMS give unphysical results; have no validity.
- Renormalization scale not arbitrary! Sets # active flavors
The Pinch Technique

(Cornwall, Papavassiliou)

\[
q \cdot V(p, k) = S^{-1}(p) - S^{-1}(k)
\]

Gauge-dependent

\[
\text{PT} = \begin{align*}
\text{self-energy-like projection} \\
\begin{array}{c}
\phantom{\text{self-energy-like projection}} \\
\end{array}
\end{align*}
\]

Gauge-invariant gluon self-energy!

natural generalization of QED charge
Use Physical Scheme to Characterize QCD Coupling

• Use Observable to define QCD coupling or Pinch Scheme

• Analytic: Smooth behavior as one crosses new quark threshold

• New perspective on grand unification
Asymptotic Unification

\[\alpha_i^{-1}(Q) \]

\[Q(\text{GeV}) \]

Binger, sjb

QCD Phenomenology

Stan Brodsky, SLAC

NNPSS July 2006
Analyticity and Mass Thresholds

\(\overline{MS} \) does not have automatic decoupling of heavy particles

Must define a set of schemes in each desert region and match

\[
\alpha_s^{(f)}(M_Q) = \alpha_s^{(f+1)}(M_Q)
\]

- The coupling has **discontinuous derivative** at the matching point
- At higher orders the coupling itself becomes **discontinuous**!
- Does not distinguish between spacelike and timelike momenta

“AN ANALYTIC EXTENSION OF THE MS-BAR RENORMALIZATION SCHEME”
Unification in Physical Schemes

- Smooth analytic threshold behavior with automatic decoupling
- More directly reflects the unification of the forces
- Higher “unification” scale than usual
General Structure of the Three-Gluon Vertex

3 index tensor \(\hat{\Gamma}_{\mu_1\mu_2\mu_3} \) built out of \(g_{\mu\nu} \) and \(p_1, p_2, p_3 \)

with \(p_1 + p_2 + p_3 = 0 \)

14 basis tensors and form factors

Full calculation, general masses, spin
The Gauge Invariant
Three Gluon Vertex

Cornwall and Papavassiliou performed the PT construction:

The “pinched” parts are added to the “regular” 3 gluon vertex

Later shown to = BFMFG

Integrals were not evaluated…

gauge
dependent

gauge
invariant
Summary of Supersymmetric Relations

<table>
<thead>
<tr>
<th>Massless</th>
<th>Massive</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F_G + 4F_Q + (10 - d)F_S = 0]</td>
<td>[F_{MG} + 4F_{MQ} + (9 - d)F_{MS} = 0]</td>
</tr>
<tr>
<td>[\Sigma_{QG}(F) \equiv \frac{d - 2}{2} F_Q + F_G]</td>
<td>[\Sigma_{MQG}(F) \equiv \frac{d - 1}{2} F_{MQ} + F_{MG}]</td>
</tr>
<tr>
<td>= simple</td>
<td>= simple</td>
</tr>
</tbody>
</table>
Multi-scale Renormalization of the Three-Gluon Vertex

\[\tilde{g}(p_1^2, p_2^2, p_3^2) \]

\[g(p_1^2) \]

\[g(p_2^2) \]

\[g(p_3^2) \]

Gauge-invariant subset of radiative correction.

Coupling at each vertex absorbs the radiative correction.
3 Scale Effective Charge

\[
\tilde{\alpha}(a,b,c) \equiv \frac{g^2(a,b,c)}{4\pi}
\]

(First suggested by H.J. Lu)

\[
\frac{1}{\tilde{\alpha}(a,b,c)} = \frac{1}{\alpha_{bare}} + \frac{1}{4\pi} \beta_0 \left(L(a,b,c) - \frac{1}{\varepsilon} + \cdots \right)
\]

\[
\frac{1}{\tilde{\alpha}(a,b,c)} = \frac{1}{\tilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 [L(a,b,c) - L(a_0,b_0,c_0)]
\]

\[L(a,b,c) = 3\text{-scale "log-like" function}\]

\[L(a,a,a) = \log(a)\]
3 Scale Effective Scale

\[L(a,b,c) \equiv \log\left(Q_{\text{eff}}^2(a,b,c)\right) + i \text{Im} L(a,b,c) \]

Governs strength of the three-gluon vertex

\[
\frac{1}{\tilde{\alpha}(a,b,c)} = \frac{1}{\tilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 [L(a,b,c) - L(a_0,b_0,c_0)]
\]

\[
\hat{\Gamma}_{\mu_1 \mu_2 \mu_3} \propto \sqrt{\tilde{\alpha}(a,b,c)}
\]

Generalization of BLM Scale to 3-Gluon Vertex
Properties of the Effective Scale

\[
Q_{\text{eff}}^2 (a, b, c) = Q_{\text{eff}}^2 (-a, -b, -c)
\]

\[
Q_{\text{eff}}^2 (\lambda a, \lambda b, \lambda c) = |\lambda| Q_{\text{eff}}^2 (a, b, c)
\]

\[
Q_{\text{eff}}^2 (a, a, a) = |a|
\]

\[
Q_{\text{eff}}^2 (a, -a, -a) \approx 5.54 |a|
\]

\[
Q_{\text{eff}}^2 (a, a, c) \approx 3.08 |c| \quad \text{for} \quad |a| >> |c|
\]

\[
Q_{\text{eff}}^2 (a, -a, c) \approx 22.8 |c| \quad \text{for} \quad |a| >> |c|
\]

\[
Q_{\text{eff}}^2 (a, b, c) \approx 22.8 \frac{|bc|}{|a|} \quad \text{for} \quad |a| >> |b|, |c|
\]

Surprising dependence on Invariants
The Effective Scale

$Q_{\text{eff}}^2 (10 \text{ GeV}^2, 10 \text{ GeV}^2, p^2)$

$Q_{\text{eff}}^2 (-10 \text{ GeV}^2, -10 \text{ GeV}^2, p^2)$

$Q_{\text{eff}}^2 (10 \text{ GeV}^2, p^2, p^2)$

$Q_{\text{eff}}^2 (-10 \text{ GeV}^2, p^2, p^2)$
Heavy Quark Hadro-production

- Preliminary calculation using (massless) results for tree level form factor
- Very low effective scale much larger cross section than \overline{MS} with scale $\mu_R = M_{Q\overline{Q}}$ or M_Q
- Future: repeat analysis using the full mass-dependent results and include all form factors

Expect that this approach accounts for most of the one-loop corrections

$\propto \propto$ \propto \propto \propto

where

$p_T \neq 0$

QCD Phenomenology

NNPSS
July 2006

Stan Brodsky, SLAC
Future Directions

Gauge-invariant four gluon vertex

\[L_4(p_1, p_2, p_3, p_4) \]
\[Q_{4\text{eff}}^2(p_1, p_2, p_3, p_4) \]

Hundreds of form factors!
Summary and Future

- **Multi-scale analytic** renormalization based on *physical, gauge-invariant* Green’s functions

- **Optimal** improvement of perturbation theory with *no scale-ambiguity* since physical kinematic invariants are the arguments of the (multi-scale) couplings
Conventional renormalization scale-setting method:

- Guess arbitrary renormalization scale and take arbitrary range. Wrong for QED and Precision Electroweak.
- Prediction depends on choice of renormalization scheme
- Variation of result with respect to renormalization scale only sensitive to nonconformal terms; no information on genuine (conformal) higher order terms
- Conventional procedure has no scientific basis.
- FAC and PMS give unphysical results.
- Renormalization scale not arbitrary: Analytic constraint from flavor thresholds
Use BLM!

- Satisfies Transitivity, all aspects of Renormalization Group; scheme independent
- Analytic at Flavor Thresholds
- Preserves Underlying Conformal Template
- Physical Interpretation of Scales; Multiple Scales
- Correct Abelian Limit ($N_c = 0$)
- Eliminates unnecessary source of imprecision of PQCD predictions
- Commensurate Scale Relations: Fundamental Tests of QCD free of renormalization scale and scheme ambiguities
- BLM used in many applications, QED, LGTH, BFKL, ...
Factorization scale

\[\mu_{\text{factorization}} \neq \mu_{\text{renormalization}} \]

- Arbitrary separation of soft and hard physics

- Dependence on factorization scale not associated with beta function - present even in conformal theory

- Keep factorization scale separate from renormalization scale

\[\frac{d\mathcal{O}}{d\mu_{\text{factorization}}} = 0 \]

- Residual dependence when one works in fixed order in perturbation theory.
Light-Front QCD Phenomenology

- Hidden color, Intrinsic glue, sea, Color Transparency
- Near Conformal Behavior of LFWFs at Short Distances; PQCD constraints
- Vanishing anomalous gravitomagnetic moment
- Relation between edm and anomalous magnetic moment
- Cluster Decomposition Theorem for relativistic systems
- OPE: DGLAP, ERBL evolution; invariant mass scheme
New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental description of hadrons at amplitude level
- Holographic Model from AdS/CFT: Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support $0 < x < 1$.
- Quark Interchange dominant force at short distances
Essential to test QCD

- J-PARC
- GSI antiprotons
- 12 GeV Jlab
- BaBar/Belle: ISR, two-gamma, timelike DVCS
- RHIC/LHC Nuclear Collisions; LHCb
- electron-proton, electron-nucleus collisions
Novel Tests of QCD at GSI

Polarized antiproton Beam Secondary Beams

- Characteristic momentum scale of QCD: 300 MeV
- Many Tests of AdS/CFT predictions possible
- Exclusive channels: Conformal scaling laws, quark-interchange
- \(\bar{p}p \) scattering: fundamental aspects of nuclear force
- Color transparency: Coherent color effects
- Nuclear Effects, Hidden Color, Anti-Shadowing
- Anomalous heavy quark phenomena
- Spin Effects: \(A_N, A_{NN} \)
QCD Phenomenology and Nucleon Structure

Thanks to Adam and Steve!

National Nuclear Physics Summer School

QCD Phenomenology

Stan Brodsky, SLAC